Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research team says extraterrestrial impact to blame for Ice Age extinctions

26.09.2007
What caused the extinction of mammoths and the decline of Stone Age people about 13,000 years ago remains hotly debated. Overhunting by Paleoindians, climate change and disease lead the list of probable causes. But an idea once considered a little out there is now hitting closer to home.

A team of international researchers, including two Northern Arizona University geologists, reports evidence that a comet or low-density object barreling toward Earth exploded in the upper atmosphere and triggered a devastating swath of destruction that wiped out most of the large animals, their habitat and humans of that period.

“The detonation either fried them or compressed them because of the shock wave,” said Ted Bunch, NAU adjunct professor of geology and former NASA researcher who specializes in impact craters. “It was a mini nuclear winter.”

Bunch and Jim Wittke, a geologic materials analyst at NAU, are co-authors of the paper, which fingers an extraterrestrial impact 12,900 years ago for the mass extinctions at the end of the Ice Age. The paper was just released online in the Proceedings of the National Academy of Sciences. The research team includes several members of the U.S. National Academy of Sciences and researchers from Hungary and the Netherlands.

No one has found a giant crater in the Earth that could attest to such a cataclysmic impact 13,000 years ago, but the research team offers evidence of a comet, two and a half to three miles in diameter, that detonated 30 to 60 miles above the earth, triggering a massive shockwave, firestorms and a subsequent drastic cooling effect across most of North America and northern Europe.

“The comet may have broken up into smaller pieces as it neared the Earth and then these pieces detonated in various places above two continents,” Bunch said.

The evidence for multiple detonations comes from a four-inch-thick “black mat” of carbon-rich material that appears as far north as Canada, Greenland and Europe to as far south as the Channel Islands off the coast of California and eastward to the Carolinas. Two sites exist in Arizona at Murray Springs and Lehner Ranch, both near Sierra Vista.

Evidence of mammoths and other megafauna and early human hunters, known as the Clovis culture, are found beneath the black mat but are missing entirely within or above it. This led the research team to conclude an extraterrestrial impact wiped out many of the inhabitants of the Late Pleistocene. Bunch notes that some animals may have survived in protected niches.

The black mat was formed by ponding of water and algal blooms and contains carbon, soot and glassy carbon—remnants of burned materials. Some of these remnants are extraterrestrial in nature. For example, the research team has identified fullerenes, spherical carbon cages resembling a soccer ball, which are formed in shock events outside the Earth’s atmosphere. Trapped inside the fullerenes is a concentration of helium 3 that is many times greater than what is found in the Earth’s atmosphere.

The black mat also has turned up nanodiamonds, which are formed in the interstellar medium outside the solar system, by or by a high-explosive detonation.

“Either these things came in with the impactor or they were made during impact detonation. We have no other explanation for their presence,” Bunch said.

The magnitude of the detonations would have been huge.

“A hydrogen bomb is the equivalent of about 100 to 1,000 megatons,” Bunch said. “The detonations we’re talking about would be about 10 million megatons. That’s larger than the simultaneous detonation of all the world’s nuclear bombs past and present.”

The research team believes the detonations destabilized a vast ice sheet, known as the Laurentide Ice Sheet, that covered most of what was then Canada and the northern United States. Heat from the detonation and firestorms would have melted much of the ice sheet, releasing water vapor into the atmosphere.

“The result was rapid cooling of about eight degrees over the next 100 years,” Bunch said. The melting of the ice sheet and subsequent climate change would explain the water-based nature of the black mat.

Catastrophic extraterrestrial impacts are not new. Scientists theorize a much larger asteroid impact annihilated the dinosaurs and about 85 percent of the Earth’s biomass about 65 million years ago. The most recent incident, known as the Tunguska event, occurred in 1908 in Russia. The Tunguska explosion was an airburst of a comet or meteorite estimated at 10-15-megatons that destroyed tens of millions of trees across more than 800 square miles.

Bunch says impact airbursts may be more common than previously thought with possibly two or three such events having occurred over the last 100,000 years. And more are sure to follow.

Lisa Nelson | EurekAlert!
Further information:
http://www.nau.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>