Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers locate mantle's spin transition zone, leading to clues about Earth's structure

25.09.2007
Researchers have located the spin transition zone of iron in Earth’s lower mantle, a discovery which has profound geophysical implications.

By looking at the electronic spin state of iron in a lower-mantle mineral at high temperatures and pressures relevant to the conditions of the Earth’s lower mantle, Lawrence Livermore National Laboratory researchers and colleagues have for the first time tracked down exactly where this occurs.

The Earth’s mantle is a 2,900-kilometer thick rocky shell that makes up about 70 percent of the Earth’s volume. It’s mostly solid and overlies the Earth’s iron-rich core. The lower mantle, which makes up more than half of the Earth by volume, is subject to high pressure-temperature conditions with a mineral collection made mostly of ferropericlase (an iron-magnesium oxide) and silicate perovskite (an iron-magnesium silicate). The Earth’s lower mantle varies in pressure from 22 GPa (220,000 atmospheres) to 140 GPa (1,400,000 atmospheres) and in temperatures from approximately 1,800 K to 4,000 K. (One atmospheres equals the pressure at the Earth’s surface).

The scientists identified the ratios of the high-spin and low-spin states of iron that define the spin transition zone. By observing the spin state, scientists can better understand the Earth’s structure, composition, and dynamics, which in turn affect geological activities on the surface.

“Locating this pressure-temperature zone of the spin transition in the lower mantle will help us understand its properties, in particular, how seismic waves travel through the Earth, how the mantle moves dynamically and how geomagnetic fields generated in the core penetrate to the Earth’s surface,” said Jung-Fu Lin, a Lawrence fellow in LLNL’s Physics and Advanced Technologies Directorate.

“The spin transition zone (STZ) concept differs from previously known structural transitions in the Earth’s interior (e.g., transition zone (TZ) between the upper mantle and the lower mantle), because the spin transition zone is defined by the electronic spin transition of iron in mantle minerals from the high-spin to the low-spin states.”

The research appears in the Sept. 21 issue of the journal, Science.

Lin and colleagues determined that the simultaneous pressure-temperature effect on the spin transition of the lower mantle phase is essential to locating the exact place where this occurs.

The scientists studied the electronic spin states of iron in ferropericlase and its crystal structure under applicable lower-mantle conditions (95 GPa [950,000 atmospheres] and 2,000 K) using X-ray emission spectroscopy and X-ray diffraction with a laser-heated diamond anvil cell. The diamond cell is a small palm-sized device that consists of two gem-quality diamonds with small tips pushing against each other. Because diamonds are the hardest known materials, millions of atmospheres in pressure can be generated in the small device. The sample between the tips was then heated by two infrared laser beams, and the spin states of iron in ferropericlase were probed in situ using synchrotron X-ray spectroscopes at the nation’s Advanced Photon Source at Argonne National Laboratory.

Ferropericlase (which is made up of magnesium, iron and oxygen) is the second most abundant mineral in the lower mantle and its physical properties are important for understanding the Earth’s structure and composition. A high- to low-spin transition of iron in ferropericlase could change its density, elasticity, electrical conductivity and other transport properties. Pressure, temperature and characteristics of the spin transition of ferropericlase are therefore of great importance for the Earth sciences, Lin explained.

“The spin transition zone of iron needs to be considered in future models of the lower mantle,” said Choong-Shik Yoo, a former staff member at LLNL and now a professor at Washington State University. “In the past, geophysicists had neglected the effects of the spin transition when studying the Earth’s interior.

Since we identified this zone, the next step is to study the properties of lower mantle oxides and silicates across the zone. This research also calls for future seismic and geodynamic tests in order to understand the properties of the spin transition zone.”

“The benchmark techniques developed here have profound implications for understanding the electronic transitions in lanthanoid and actinoid compounds under extreme conditions because their properties would be affected by the electronic transitions,” said Valentin Iota, a staff member in LLNL’s Physics and Advanced Technologies Directorate.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>