Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers locate mantle's spin transition zone, leading to clues about Earth's structure

25.09.2007
Researchers have located the spin transition zone of iron in Earth’s lower mantle, a discovery which has profound geophysical implications.

By looking at the electronic spin state of iron in a lower-mantle mineral at high temperatures and pressures relevant to the conditions of the Earth’s lower mantle, Lawrence Livermore National Laboratory researchers and colleagues have for the first time tracked down exactly where this occurs.

The Earth’s mantle is a 2,900-kilometer thick rocky shell that makes up about 70 percent of the Earth’s volume. It’s mostly solid and overlies the Earth’s iron-rich core. The lower mantle, which makes up more than half of the Earth by volume, is subject to high pressure-temperature conditions with a mineral collection made mostly of ferropericlase (an iron-magnesium oxide) and silicate perovskite (an iron-magnesium silicate). The Earth’s lower mantle varies in pressure from 22 GPa (220,000 atmospheres) to 140 GPa (1,400,000 atmospheres) and in temperatures from approximately 1,800 K to 4,000 K. (One atmospheres equals the pressure at the Earth’s surface).

The scientists identified the ratios of the high-spin and low-spin states of iron that define the spin transition zone. By observing the spin state, scientists can better understand the Earth’s structure, composition, and dynamics, which in turn affect geological activities on the surface.

“Locating this pressure-temperature zone of the spin transition in the lower mantle will help us understand its properties, in particular, how seismic waves travel through the Earth, how the mantle moves dynamically and how geomagnetic fields generated in the core penetrate to the Earth’s surface,” said Jung-Fu Lin, a Lawrence fellow in LLNL’s Physics and Advanced Technologies Directorate.

“The spin transition zone (STZ) concept differs from previously known structural transitions in the Earth’s interior (e.g., transition zone (TZ) between the upper mantle and the lower mantle), because the spin transition zone is defined by the electronic spin transition of iron in mantle minerals from the high-spin to the low-spin states.”

The research appears in the Sept. 21 issue of the journal, Science.

Lin and colleagues determined that the simultaneous pressure-temperature effect on the spin transition of the lower mantle phase is essential to locating the exact place where this occurs.

The scientists studied the electronic spin states of iron in ferropericlase and its crystal structure under applicable lower-mantle conditions (95 GPa [950,000 atmospheres] and 2,000 K) using X-ray emission spectroscopy and X-ray diffraction with a laser-heated diamond anvil cell. The diamond cell is a small palm-sized device that consists of two gem-quality diamonds with small tips pushing against each other. Because diamonds are the hardest known materials, millions of atmospheres in pressure can be generated in the small device. The sample between the tips was then heated by two infrared laser beams, and the spin states of iron in ferropericlase were probed in situ using synchrotron X-ray spectroscopes at the nation’s Advanced Photon Source at Argonne National Laboratory.

Ferropericlase (which is made up of magnesium, iron and oxygen) is the second most abundant mineral in the lower mantle and its physical properties are important for understanding the Earth’s structure and composition. A high- to low-spin transition of iron in ferropericlase could change its density, elasticity, electrical conductivity and other transport properties. Pressure, temperature and characteristics of the spin transition of ferropericlase are therefore of great importance for the Earth sciences, Lin explained.

“The spin transition zone of iron needs to be considered in future models of the lower mantle,” said Choong-Shik Yoo, a former staff member at LLNL and now a professor at Washington State University. “In the past, geophysicists had neglected the effects of the spin transition when studying the Earth’s interior.

Since we identified this zone, the next step is to study the properties of lower mantle oxides and silicates across the zone. This research also calls for future seismic and geodynamic tests in order to understand the properties of the spin transition zone.”

“The benchmark techniques developed here have profound implications for understanding the electronic transitions in lanthanoid and actinoid compounds under extreme conditions because their properties would be affected by the electronic transitions,” said Valentin Iota, a staff member in LLNL’s Physics and Advanced Technologies Directorate.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>