Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers locate mantle's spin transition zone, leading to clues about Earth's structure

25.09.2007
Researchers have located the spin transition zone of iron in Earth’s lower mantle, a discovery which has profound geophysical implications.

By looking at the electronic spin state of iron in a lower-mantle mineral at high temperatures and pressures relevant to the conditions of the Earth’s lower mantle, Lawrence Livermore National Laboratory researchers and colleagues have for the first time tracked down exactly where this occurs.

The Earth’s mantle is a 2,900-kilometer thick rocky shell that makes up about 70 percent of the Earth’s volume. It’s mostly solid and overlies the Earth’s iron-rich core. The lower mantle, which makes up more than half of the Earth by volume, is subject to high pressure-temperature conditions with a mineral collection made mostly of ferropericlase (an iron-magnesium oxide) and silicate perovskite (an iron-magnesium silicate). The Earth’s lower mantle varies in pressure from 22 GPa (220,000 atmospheres) to 140 GPa (1,400,000 atmospheres) and in temperatures from approximately 1,800 K to 4,000 K. (One atmospheres equals the pressure at the Earth’s surface).

The scientists identified the ratios of the high-spin and low-spin states of iron that define the spin transition zone. By observing the spin state, scientists can better understand the Earth’s structure, composition, and dynamics, which in turn affect geological activities on the surface.

“Locating this pressure-temperature zone of the spin transition in the lower mantle will help us understand its properties, in particular, how seismic waves travel through the Earth, how the mantle moves dynamically and how geomagnetic fields generated in the core penetrate to the Earth’s surface,” said Jung-Fu Lin, a Lawrence fellow in LLNL’s Physics and Advanced Technologies Directorate.

“The spin transition zone (STZ) concept differs from previously known structural transitions in the Earth’s interior (e.g., transition zone (TZ) between the upper mantle and the lower mantle), because the spin transition zone is defined by the electronic spin transition of iron in mantle minerals from the high-spin to the low-spin states.”

The research appears in the Sept. 21 issue of the journal, Science.

Lin and colleagues determined that the simultaneous pressure-temperature effect on the spin transition of the lower mantle phase is essential to locating the exact place where this occurs.

The scientists studied the electronic spin states of iron in ferropericlase and its crystal structure under applicable lower-mantle conditions (95 GPa [950,000 atmospheres] and 2,000 K) using X-ray emission spectroscopy and X-ray diffraction with a laser-heated diamond anvil cell. The diamond cell is a small palm-sized device that consists of two gem-quality diamonds with small tips pushing against each other. Because diamonds are the hardest known materials, millions of atmospheres in pressure can be generated in the small device. The sample between the tips was then heated by two infrared laser beams, and the spin states of iron in ferropericlase were probed in situ using synchrotron X-ray spectroscopes at the nation’s Advanced Photon Source at Argonne National Laboratory.

Ferropericlase (which is made up of magnesium, iron and oxygen) is the second most abundant mineral in the lower mantle and its physical properties are important for understanding the Earth’s structure and composition. A high- to low-spin transition of iron in ferropericlase could change its density, elasticity, electrical conductivity and other transport properties. Pressure, temperature and characteristics of the spin transition of ferropericlase are therefore of great importance for the Earth sciences, Lin explained.

“The spin transition zone of iron needs to be considered in future models of the lower mantle,” said Choong-Shik Yoo, a former staff member at LLNL and now a professor at Washington State University. “In the past, geophysicists had neglected the effects of the spin transition when studying the Earth’s interior.

Since we identified this zone, the next step is to study the properties of lower mantle oxides and silicates across the zone. This research also calls for future seismic and geodynamic tests in order to understand the properties of the spin transition zone.”

“The benchmark techniques developed here have profound implications for understanding the electronic transitions in lanthanoid and actinoid compounds under extreme conditions because their properties would be affected by the electronic transitions,” said Valentin Iota, a staff member in LLNL’s Physics and Advanced Technologies Directorate.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

More articles from Earth Sciences:

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

nachricht WSU researchers document one of planet's largest volcanic eruptions
12.10.2017 | Washington State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>