Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA researchers find snowmelt in Antarctica creeping inland

25.09.2007
On the world's coldest continent of Antarctica, the landscape is so vast and varied that only satellites can fully capture the extent of changes in the snow melting across its valleys, mountains, glaciers and ice shelves.

In a new NASA study, researchers using 20 years of data from space-based sensors have confirmed that Antarctic snow is melting farther inland from the coast over time, melting at higher altitudes than ever and increasingly melting on Antarctica's largest ice shelf.

With a surface size about 1.5 times the size of the United States, Antarctica contains 90 percent of Earth's fresh water, making it the largest potential source of sea level rise. It is also a place where snow melting is quite limited because even in summer, most areas typically record temperatures well below zero.

Nevertheless, NASA researchers using data collected from 1987 to 2006 found snow melting in unlikely places in 2005: as far inland as 500 miles away from the Antarctic coast and as high as 1.2 miles above sea level in the Transantarctic Mountains. The 20-year data record was three times longer than previous studies and reaffirmed the extreme melting irregularity observed in 2005. During the same period, they also found that melting had increased on the Ross Ice Shelf, both in terms of the geographic area affected and the duration of increased melting across affected areas.

"Snow melting is very connected to surface temperature change, so it's likely warmer temperatures are at the root of what we've observed in Antarctica," said lead author Marco Tedesco, a research scientist at the Joint Center for Earth Systems Technology cooperatively managed by NASA's Goddard Space Flight Center, Greenbelt, Md., and the University of Maryland at Baltimore County, Baltimore. The study will be published on Sept. 22 in the American Geophysical Union's Geophysical Research Letters.

The Special Sensor Microwave Imager radiometer aboard the Defense Meteorological Satellite Program's satellites provided the researchers an update on previous studies by showing evidence of persistent snow melting – melting that occurs for at least three days or for one consecutive day and night. As the sensors fly over Antarctica, they measure the radiation naturally emitted by snow and ice at microwave frequencies. Unlike visible sensors, Microwave instruments can also detect melting below the snow surface.

"Microwave instruments are very sensitive to wet snow and can see through clouds day and night, allowing us to separate melting from dry snow to better understand when, where and for how long melting took place," said Tedesco.

Although the researchers observed less melting in some locations on the continent during the 20-year period, melting increased in others such as the Ross Ice Shelf. Increased snowmelt on the ice shelf surface can lead to melt ponds, with meltwater filling small cracks. The liquid water puts pressure on the cracks causing larger fractures in the ice shelf.

"Persistent melting on the Ross Ice Shelf is something we should not lose sight of because of the ice shelf's role as a 'brake system' for glaciers," said Tedesco. "Ice shelves are thick ice masses covering coastal land with extended areas that float on the sea, keeping warmer marine air at a distance from glaciers and preventing a greater acceleration of melting. The Ross Ice Shelf acts like a freezer door, separating ice on the inside from warmer air on the outside. So the smaller that door becomes, the less effective it will be at protecting the ice inside from melting and escaping."

The study's results from the satellite data support related research reporting a direct link between changes in near surface air temperatures and the duration and geographic area of snow melting on Antarctica. These studies, when taken together, indicate a relationship to climate change.

"Satellites have given us a remarkable ability to monitor the melting trends of glaciers and ice shelves on this immense and largely unknown continent, and to watch for unusual occurrences like those observed in 2005," said co-author Waleed Abdalati, head of the Cryospheric Sciences Branch at NASA's Goddard Space Flight Center. "Through this space-based perspective, we are really only just beginning to understand the nature of the changes that are occurring in Antarctica, and what these changes will mean for Antarctica's future contributions to sea level."

Lynn Chandler | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/centers/goddard/news/topstory/2007/antarctic_snowmelt.html

More articles from Earth Sciences:

nachricht PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target
22.05.2018 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

nachricht Monitoring lava lake levels in Congo volcano
16.05.2018 | Seismological Society of America

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Matabele ants: Travelling faster with detours

22.05.2018 | Life Sciences

Flow of cerebrospinal fluid regulates neural stem cell division

22.05.2018 | Life Sciences

Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal

22.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>