Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA researchers find snowmelt in Antarctica creeping inland

25.09.2007
On the world's coldest continent of Antarctica, the landscape is so vast and varied that only satellites can fully capture the extent of changes in the snow melting across its valleys, mountains, glaciers and ice shelves.

In a new NASA study, researchers using 20 years of data from space-based sensors have confirmed that Antarctic snow is melting farther inland from the coast over time, melting at higher altitudes than ever and increasingly melting on Antarctica's largest ice shelf.

With a surface size about 1.5 times the size of the United States, Antarctica contains 90 percent of Earth's fresh water, making it the largest potential source of sea level rise. It is also a place where snow melting is quite limited because even in summer, most areas typically record temperatures well below zero.

Nevertheless, NASA researchers using data collected from 1987 to 2006 found snow melting in unlikely places in 2005: as far inland as 500 miles away from the Antarctic coast and as high as 1.2 miles above sea level in the Transantarctic Mountains. The 20-year data record was three times longer than previous studies and reaffirmed the extreme melting irregularity observed in 2005. During the same period, they also found that melting had increased on the Ross Ice Shelf, both in terms of the geographic area affected and the duration of increased melting across affected areas.

"Snow melting is very connected to surface temperature change, so it's likely warmer temperatures are at the root of what we've observed in Antarctica," said lead author Marco Tedesco, a research scientist at the Joint Center for Earth Systems Technology cooperatively managed by NASA's Goddard Space Flight Center, Greenbelt, Md., and the University of Maryland at Baltimore County, Baltimore. The study will be published on Sept. 22 in the American Geophysical Union's Geophysical Research Letters.

The Special Sensor Microwave Imager radiometer aboard the Defense Meteorological Satellite Program's satellites provided the researchers an update on previous studies by showing evidence of persistent snow melting – melting that occurs for at least three days or for one consecutive day and night. As the sensors fly over Antarctica, they measure the radiation naturally emitted by snow and ice at microwave frequencies. Unlike visible sensors, Microwave instruments can also detect melting below the snow surface.

"Microwave instruments are very sensitive to wet snow and can see through clouds day and night, allowing us to separate melting from dry snow to better understand when, where and for how long melting took place," said Tedesco.

Although the researchers observed less melting in some locations on the continent during the 20-year period, melting increased in others such as the Ross Ice Shelf. Increased snowmelt on the ice shelf surface can lead to melt ponds, with meltwater filling small cracks. The liquid water puts pressure on the cracks causing larger fractures in the ice shelf.

"Persistent melting on the Ross Ice Shelf is something we should not lose sight of because of the ice shelf's role as a 'brake system' for glaciers," said Tedesco. "Ice shelves are thick ice masses covering coastal land with extended areas that float on the sea, keeping warmer marine air at a distance from glaciers and preventing a greater acceleration of melting. The Ross Ice Shelf acts like a freezer door, separating ice on the inside from warmer air on the outside. So the smaller that door becomes, the less effective it will be at protecting the ice inside from melting and escaping."

The study's results from the satellite data support related research reporting a direct link between changes in near surface air temperatures and the duration and geographic area of snow melting on Antarctica. These studies, when taken together, indicate a relationship to climate change.

"Satellites have given us a remarkable ability to monitor the melting trends of glaciers and ice shelves on this immense and largely unknown continent, and to watch for unusual occurrences like those observed in 2005," said co-author Waleed Abdalati, head of the Cryospheric Sciences Branch at NASA's Goddard Space Flight Center. "Through this space-based perspective, we are really only just beginning to understand the nature of the changes that are occurring in Antarctica, and what these changes will mean for Antarctica's future contributions to sea level."

Lynn Chandler | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/centers/goddard/news/topstory/2007/antarctic_snowmelt.html

More articles from Earth Sciences:

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

nachricht New research unlocks forests' potential in climate change mitigation
21.04.2017 | Clemson University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>