Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Argon conclusion: Researchers reassess theories on formation of Earth's atmosphere

Geochemists at Rensselaer Polytechnic Institute are challenging commonly held ideas about how gases are expelled from the Earth.

Their theory, which is described in the Sept. 20 issue of the journal Nature, could change the way scientists view the formation of Earth’s atmosphere and those of our distant neighbors, Mars and Venus. Their data throw into doubt the timing and mechanism of atmospheric formation on terrestrial plants.

Lead by E. Bruce Watson, Institute Professor of Science at Rensselaer, the team has found strong evidence that argon atoms are tenaciously bound in the minerals of Earth’s mantle and move through these minerals at a much slower rate than previously thought. In fact, they found that even volcanic activity is unlikely to dislodge argon atoms from their resting places within the mantle. This is in direct contrast to widely held theories on how gases moved through early Earth to form our atmosphere and oceans, according to Watson.

Scientists believe that shortly after Earth was formed, it had a glowing surface of molten rock extending down hundreds of miles. As that surface cooled, a rigid crust was produced near the surface and solidified slowly downward to complete the now-solid planet. Some scientists have suggested that Earth lost all of its initial gases, either during the molten stage or as a consequence of a massive collision, and that the catastrophically expelled gases formed our early atmosphere and oceans. Others contend that this early “degassing” was incomplete, and that primordial gases still remain sequestered at great depth to this day. Watson’s new results support this latter theory.

“For the ‘deep-sequestration’ theory to be correct, certain gases would have to avoid escape to the atmosphere in the face of mantle convection and volcanism,” Watson said. “Our data suggest that argon does indeed stay trapped in the mantle even at extremely high temperatures, making it difficult for the Earth to continuously purge itself of argon produced by radioactive decay of potassium.”

Argon and other noble gases are tracer elements for scientists because they are very stable and do not change over time, although certain isotopes accumulate through radioactive decay. Unlike more promiscuous elements such as carbon and oxygen, which are constantly bonding and reacting with other elements, reliable argon and her sister noble gases (helium, neon, krypton, and xenon) remain virtually unchanged through the ages. Its steady personality makes argon an ideal marker for understanding the dynamics of Earth’s interior.

“By measuring the behavior of argon in minerals, we can begin to retrace the formation of Earth’s atmosphere and understand how and if complete degassing has occurred,” Watson explained.

Watson’s team, which includes Rensselaer postdoctoral researcher Jay B. Thomas and research professor Daniele J. Cherniak, developed reams of data in support of their emerging belief that argon resides stably in crystals and migrates slowly. “We realized from our initial results that these ideas might cause a stir,” Watson said. “So we wanted to make sure that we had substantial data supporting our case.”

The team heated magnesium silicate minerals found in Earth’s mantle, which is the region of Earth sandwiched between the upper crust and the central core, in an argon atmosphere. They used high temperature to simulate the intense heat deep within the Earth to see whether and how fast the argon atoms moved into the minerals. Argon was taken up by the minerals in unexpectedly large quantities, but at a slow rate.

“The results show that argon could stay in the mantle even after being exposed to extreme temperatures,” Watson said. “We can no longer assume that a partly melted region of the mantle will be stripped of all argon and, by extension, other noble gases.”

But there is some argon in our atmosphere--slightly less than 1 percent. If it didn’t shoot through the rocky mantle, how did it get into the atmosphere"

“We proposed that argon’s release to the atmosphere is through the weathering of the upper crust and not the melting of the mantle,” Watson said. “The oceanic crust is constantly being weathered by ocean water and the continental crust is rich in potassium, which decays to form argon.”

And what about the primordial argon that was trapped in the Earth billions of years ago" “Some of it is probably still down there,” Watson said.

Because Mars and Venus have mantle materials similar to those found on Earth, the theory could be key for understanding their atmospheres as well.

Watson and his team have already begun to test their theories on other noble gases, and they foresee similar results. “We may need to start reassessing our basic thinking on how the atmosphere and other large-scale systems were formed,” he said.

Gabrielle DeMarco | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>