Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Argon conclusion: Researchers reassess theories on formation of Earth's atmosphere

21.09.2007
Geochemists at Rensselaer Polytechnic Institute are challenging commonly held ideas about how gases are expelled from the Earth.

Their theory, which is described in the Sept. 20 issue of the journal Nature, could change the way scientists view the formation of Earth’s atmosphere and those of our distant neighbors, Mars and Venus. Their data throw into doubt the timing and mechanism of atmospheric formation on terrestrial plants.

Lead by E. Bruce Watson, Institute Professor of Science at Rensselaer, the team has found strong evidence that argon atoms are tenaciously bound in the minerals of Earth’s mantle and move through these minerals at a much slower rate than previously thought. In fact, they found that even volcanic activity is unlikely to dislodge argon atoms from their resting places within the mantle. This is in direct contrast to widely held theories on how gases moved through early Earth to form our atmosphere and oceans, according to Watson.

Scientists believe that shortly after Earth was formed, it had a glowing surface of molten rock extending down hundreds of miles. As that surface cooled, a rigid crust was produced near the surface and solidified slowly downward to complete the now-solid planet. Some scientists have suggested that Earth lost all of its initial gases, either during the molten stage or as a consequence of a massive collision, and that the catastrophically expelled gases formed our early atmosphere and oceans. Others contend that this early “degassing” was incomplete, and that primordial gases still remain sequestered at great depth to this day. Watson’s new results support this latter theory.

“For the ‘deep-sequestration’ theory to be correct, certain gases would have to avoid escape to the atmosphere in the face of mantle convection and volcanism,” Watson said. “Our data suggest that argon does indeed stay trapped in the mantle even at extremely high temperatures, making it difficult for the Earth to continuously purge itself of argon produced by radioactive decay of potassium.”

Argon and other noble gases are tracer elements for scientists because they are very stable and do not change over time, although certain isotopes accumulate through radioactive decay. Unlike more promiscuous elements such as carbon and oxygen, which are constantly bonding and reacting with other elements, reliable argon and her sister noble gases (helium, neon, krypton, and xenon) remain virtually unchanged through the ages. Its steady personality makes argon an ideal marker for understanding the dynamics of Earth’s interior.

“By measuring the behavior of argon in minerals, we can begin to retrace the formation of Earth’s atmosphere and understand how and if complete degassing has occurred,” Watson explained.

Watson’s team, which includes Rensselaer postdoctoral researcher Jay B. Thomas and research professor Daniele J. Cherniak, developed reams of data in support of their emerging belief that argon resides stably in crystals and migrates slowly. “We realized from our initial results that these ideas might cause a stir,” Watson said. “So we wanted to make sure that we had substantial data supporting our case.”

The team heated magnesium silicate minerals found in Earth’s mantle, which is the region of Earth sandwiched between the upper crust and the central core, in an argon atmosphere. They used high temperature to simulate the intense heat deep within the Earth to see whether and how fast the argon atoms moved into the minerals. Argon was taken up by the minerals in unexpectedly large quantities, but at a slow rate.

“The results show that argon could stay in the mantle even after being exposed to extreme temperatures,” Watson said. “We can no longer assume that a partly melted region of the mantle will be stripped of all argon and, by extension, other noble gases.”

But there is some argon in our atmosphere--slightly less than 1 percent. If it didn’t shoot through the rocky mantle, how did it get into the atmosphere"

“We proposed that argon’s release to the atmosphere is through the weathering of the upper crust and not the melting of the mantle,” Watson said. “The oceanic crust is constantly being weathered by ocean water and the continental crust is rich in potassium, which decays to form argon.”

And what about the primordial argon that was trapped in the Earth billions of years ago" “Some of it is probably still down there,” Watson said.

Because Mars and Venus have mantle materials similar to those found on Earth, the theory could be key for understanding their atmospheres as well.

Watson and his team have already begun to test their theories on other noble gases, and they foresee similar results. “We may need to start reassessing our basic thinking on how the atmosphere and other large-scale systems were formed,” he said.

Gabrielle DeMarco | EurekAlert!
Further information:
http://www.rpi.edu

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>