Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Calculating flood waves in Lyngen

12.09.2007
It is hoped that detailed mapping of the fjord floor in Lyngen in Troms, northern Norway, will show how flood waves generated by avalanches crashing into the sea may affect the land. The unstable section of Nordnesfjellet, 600-800 metres above the beautiful fjord, is moving up to three centimetres a year.

Seisma, a research vessel belonging to the Geological Survey of Norway (NGU), is sweeping Storfjord with seismic and state-of-the-art, side-scanning sonar. Metre by metre, scientists are studying the floor of the fjord.

Well prepared

On the basis of these detailed maps, staff from the Norwegian Geotechnical Institute (NGI) will construct a precise terrain model of the sea floor. They can use this to calculate how flood waves will build up and sweep over the shores if Nordnesfjellet should one day crash into the sea.

“It’s vital to get as much information as possible about both the mountain and the floor of the fjord. This will enable us to be prepared in case the worst should happen,” Oddvar Longva, a geologist at NGU, tells me. He is the skipper of the Seisma and has a great deal of experience of surveying conditions on the floor of Norwegian fjords.

Large flood waves

The worst scenario here is that several million cubic metres of mountainside will one day sweep over the E6 trunk road and end up in the fjord. This will generate a flood wave that will hit the boroughs of Lyngen, Kåfjord and Storfjord. As many as 6000 people, along with buildings, industrial plants and farmland, may be inundated.

”It’s not very likely that the mountainside will crash into the fjord in the very near future, but if it does the consequences will be enormous. There is therefore a great deal of risk associated with an unstable section of mountainside,” Terje H. Bargel, a geologist at the Geological Survey of Norway (NGU), stresses.

”When we’ve learnt how an unstable section of mountainside behaves, and mapped the terrain below sea level, it will be easier for local authorities to draw up contingency plans to provide warning and ensure evacuation,” he continues.

The danger

Terje Bargel heads the avalanche group at NGU and is very satisfied that the authorities are now putting priority on investigations of major avalanches.

”The Government has allocated an additional five million NOK this year to study the risk of major avalanches. NGU is concentrating particularly on large avalanches involving more than 100 000 cubic metres of rock that may crash right down into fjords and generate tsunamis. We’ve studied 13 sites in the county of Troms in northern Norway that have the potential to develop major avalanches. Lyngen is by far the most important area,” Terje Bargel says.

Installing equipment

It is the northern part of Nordnesfjellet that is moving. NGU has studied the mountain on several occasions by both mapping the geology and gathering geophysical data.

The hazardous stretch of mountainside is four hundred metres broad, five hundred metres high and between fifty and one hundred metres deep. New instruments are now being installed to monitor the mountainside.

Laser meters will monitor movements in the mountainside and tension rods will measure the widening of the fissures. Meteorological instruments are also being set up to monitor the wind, temperature and precipitation.

By Gudmund Løvø

Terje Bargel | alfa
Further information:
http://www.ngu.no

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>