Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Calculating flood waves in Lyngen

12.09.2007
It is hoped that detailed mapping of the fjord floor in Lyngen in Troms, northern Norway, will show how flood waves generated by avalanches crashing into the sea may affect the land. The unstable section of Nordnesfjellet, 600-800 metres above the beautiful fjord, is moving up to three centimetres a year.

Seisma, a research vessel belonging to the Geological Survey of Norway (NGU), is sweeping Storfjord with seismic and state-of-the-art, side-scanning sonar. Metre by metre, scientists are studying the floor of the fjord.

Well prepared

On the basis of these detailed maps, staff from the Norwegian Geotechnical Institute (NGI) will construct a precise terrain model of the sea floor. They can use this to calculate how flood waves will build up and sweep over the shores if Nordnesfjellet should one day crash into the sea.

“It’s vital to get as much information as possible about both the mountain and the floor of the fjord. This will enable us to be prepared in case the worst should happen,” Oddvar Longva, a geologist at NGU, tells me. He is the skipper of the Seisma and has a great deal of experience of surveying conditions on the floor of Norwegian fjords.

Large flood waves

The worst scenario here is that several million cubic metres of mountainside will one day sweep over the E6 trunk road and end up in the fjord. This will generate a flood wave that will hit the boroughs of Lyngen, Kåfjord and Storfjord. As many as 6000 people, along with buildings, industrial plants and farmland, may be inundated.

”It’s not very likely that the mountainside will crash into the fjord in the very near future, but if it does the consequences will be enormous. There is therefore a great deal of risk associated with an unstable section of mountainside,” Terje H. Bargel, a geologist at the Geological Survey of Norway (NGU), stresses.

”When we’ve learnt how an unstable section of mountainside behaves, and mapped the terrain below sea level, it will be easier for local authorities to draw up contingency plans to provide warning and ensure evacuation,” he continues.

The danger

Terje Bargel heads the avalanche group at NGU and is very satisfied that the authorities are now putting priority on investigations of major avalanches.

”The Government has allocated an additional five million NOK this year to study the risk of major avalanches. NGU is concentrating particularly on large avalanches involving more than 100 000 cubic metres of rock that may crash right down into fjords and generate tsunamis. We’ve studied 13 sites in the county of Troms in northern Norway that have the potential to develop major avalanches. Lyngen is by far the most important area,” Terje Bargel says.

Installing equipment

It is the northern part of Nordnesfjellet that is moving. NGU has studied the mountain on several occasions by both mapping the geology and gathering geophysical data.

The hazardous stretch of mountainside is four hundred metres broad, five hundred metres high and between fifty and one hundred metres deep. New instruments are now being installed to monitor the mountainside.

Laser meters will monitor movements in the mountainside and tension rods will measure the widening of the fissures. Meteorological instruments are also being set up to monitor the wind, temperature and precipitation.

By Gudmund Løvø

Terje Bargel | alfa
Further information:
http://www.ngu.no

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>