Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Calculating flood waves in Lyngen

12.09.2007
It is hoped that detailed mapping of the fjord floor in Lyngen in Troms, northern Norway, will show how flood waves generated by avalanches crashing into the sea may affect the land. The unstable section of Nordnesfjellet, 600-800 metres above the beautiful fjord, is moving up to three centimetres a year.

Seisma, a research vessel belonging to the Geological Survey of Norway (NGU), is sweeping Storfjord with seismic and state-of-the-art, side-scanning sonar. Metre by metre, scientists are studying the floor of the fjord.

Well prepared

On the basis of these detailed maps, staff from the Norwegian Geotechnical Institute (NGI) will construct a precise terrain model of the sea floor. They can use this to calculate how flood waves will build up and sweep over the shores if Nordnesfjellet should one day crash into the sea.

“It’s vital to get as much information as possible about both the mountain and the floor of the fjord. This will enable us to be prepared in case the worst should happen,” Oddvar Longva, a geologist at NGU, tells me. He is the skipper of the Seisma and has a great deal of experience of surveying conditions on the floor of Norwegian fjords.

Large flood waves

The worst scenario here is that several million cubic metres of mountainside will one day sweep over the E6 trunk road and end up in the fjord. This will generate a flood wave that will hit the boroughs of Lyngen, Kåfjord and Storfjord. As many as 6000 people, along with buildings, industrial plants and farmland, may be inundated.

”It’s not very likely that the mountainside will crash into the fjord in the very near future, but if it does the consequences will be enormous. There is therefore a great deal of risk associated with an unstable section of mountainside,” Terje H. Bargel, a geologist at the Geological Survey of Norway (NGU), stresses.

”When we’ve learnt how an unstable section of mountainside behaves, and mapped the terrain below sea level, it will be easier for local authorities to draw up contingency plans to provide warning and ensure evacuation,” he continues.

The danger

Terje Bargel heads the avalanche group at NGU and is very satisfied that the authorities are now putting priority on investigations of major avalanches.

”The Government has allocated an additional five million NOK this year to study the risk of major avalanches. NGU is concentrating particularly on large avalanches involving more than 100 000 cubic metres of rock that may crash right down into fjords and generate tsunamis. We’ve studied 13 sites in the county of Troms in northern Norway that have the potential to develop major avalanches. Lyngen is by far the most important area,” Terje Bargel says.

Installing equipment

It is the northern part of Nordnesfjellet that is moving. NGU has studied the mountain on several occasions by both mapping the geology and gathering geophysical data.

The hazardous stretch of mountainside is four hundred metres broad, five hundred metres high and between fifty and one hundred metres deep. New instruments are now being installed to monitor the mountainside.

Laser meters will monitor movements in the mountainside and tension rods will measure the widening of the fissures. Meteorological instruments are also being set up to monitor the wind, temperature and precipitation.

By Gudmund Løvø

Terje Bargel | alfa
Further information:
http://www.ngu.no

More articles from Earth Sciences:

nachricht The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships
19.09.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

nachricht FotoQuest GO: Citizen science campaign targets land-use change in Austria
19.09.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>