Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA study predicts more severe storms with global warming

03.09.2007
NASA scientists have developed a new climate model that indicates that the most violent severe storms and tornadoes may become more common as Earth’s climate warms.

Previous climate model studies have shown that heavy rainstorms will be more common in a warmer climate, but few global models have attempted to simulate the strength of updrafts in these storms. The model developed at NASA’s Goddard Institute for Space Studies by researchers Tony Del Genio, Mao-Sung Yao, and Jeff Jonas is the first to successfully simulate the observed difference in strength between land and ocean storms and is the first to estimate how the strength will change in a warming climate, including “severe thunderstorms” that also occur with significant wind shear and produce damaging winds at the ground. This information can be derived from the temperatures and humidities predicted by a climate computer model, according to the new study published on August 17 in the American Geophysical Union’s Geophysical Research Letters. It predicts that in a warmer climate, stronger and more severe storms can be expected, but with fewer storms overall.

Global computer models represent weather and climate over regions several hundred miles wide. The models do not directly simulate thunderstorms and lightning. Instead, they evaluate when conditions are conducive to the outbreak of storms of varying strengths. This model first was tested against current climate conditions. It was found to represent major known global storm features including the prevalence of lightning over tropical continents such as Africa and, to a lesser extent, the Amazon Basin, and the near absence of lightning in oceanic storms.

The model then was applied to a hypothetical future climate with double the current carbon dioxide level and a surface that is an average of 5 degrees Fahrenheit warmer than the current climate. The study found that continents warm more than oceans and that the altitude at which lightning forms rises to a level where the storms are usually more vigorous.

These effects combine to cause more of the continental storms that form in the warmer climate to resemble the strongest storms we currently experience.

Lightning produced by strong storms often ignites wildfires in dry areas. Researchers have predicted that some regions would have less humid air in a warmer climate and be more prone to wildfires as a result. However, drier conditions produce fewer storms. "These findings may seem to imply that fewer storms in the future will be good news for disastrous western U.S. wildfires," said Tony Del Genio, lead author of the study and a scientist at NASA’s Goddard Institute for Space Studies, New York. "But drier conditions near the ground combined with higher lightning flash rates per storm may end up intensifying wildfire damage instead."

The central and eastern areas of the United States are especially prone to severe storms and thunderstorms that arise when strong updrafts combine with horizontal winds that become stronger at higher altitudes. This combination produces damaging horizontal and vertical winds and is a major source of weather-related casualties. In the warmer climate simulation there is a small class of the most extreme storms with both strong updrafts and strong horizontal winds at higher levels that occur more often, and thus the model suggests that the most violent severe storms and tornadoes may become more common with warming.

The prediction of stronger continental storms and more lightning in a warmer climate is a natural consequence of the tendency of land surfaces to warm more than oceans and for the freezing level to rise with warming to an altitude where lightning-producing updrafts are stronger. These features of global warming are common to all models, but this is the first climate model to explore the ramifications of the warming for thunderstorms.

Lynn Chandler | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/centers/goddard/news/topstory/2007/moist_convection.html

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Devils Hole: Ancient Traces of Climate History

24.05.2017 | Earth Sciences

Discovery of a Key Regulatory Gene in Cardiac Valve Formation

24.05.2017 | Life Sciences

A CLOUD of possibilities: Finding new therapies by combining drugs

24.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>