Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA study predicts more severe storms with global warming

03.09.2007
NASA scientists have developed a new climate model that indicates that the most violent severe storms and tornadoes may become more common as Earth’s climate warms.

Previous climate model studies have shown that heavy rainstorms will be more common in a warmer climate, but few global models have attempted to simulate the strength of updrafts in these storms. The model developed at NASA’s Goddard Institute for Space Studies by researchers Tony Del Genio, Mao-Sung Yao, and Jeff Jonas is the first to successfully simulate the observed difference in strength between land and ocean storms and is the first to estimate how the strength will change in a warming climate, including “severe thunderstorms” that also occur with significant wind shear and produce damaging winds at the ground. This information can be derived from the temperatures and humidities predicted by a climate computer model, according to the new study published on August 17 in the American Geophysical Union’s Geophysical Research Letters. It predicts that in a warmer climate, stronger and more severe storms can be expected, but with fewer storms overall.

Global computer models represent weather and climate over regions several hundred miles wide. The models do not directly simulate thunderstorms and lightning. Instead, they evaluate when conditions are conducive to the outbreak of storms of varying strengths. This model first was tested against current climate conditions. It was found to represent major known global storm features including the prevalence of lightning over tropical continents such as Africa and, to a lesser extent, the Amazon Basin, and the near absence of lightning in oceanic storms.

The model then was applied to a hypothetical future climate with double the current carbon dioxide level and a surface that is an average of 5 degrees Fahrenheit warmer than the current climate. The study found that continents warm more than oceans and that the altitude at which lightning forms rises to a level where the storms are usually more vigorous.

These effects combine to cause more of the continental storms that form in the warmer climate to resemble the strongest storms we currently experience.

Lightning produced by strong storms often ignites wildfires in dry areas. Researchers have predicted that some regions would have less humid air in a warmer climate and be more prone to wildfires as a result. However, drier conditions produce fewer storms. "These findings may seem to imply that fewer storms in the future will be good news for disastrous western U.S. wildfires," said Tony Del Genio, lead author of the study and a scientist at NASA’s Goddard Institute for Space Studies, New York. "But drier conditions near the ground combined with higher lightning flash rates per storm may end up intensifying wildfire damage instead."

The central and eastern areas of the United States are especially prone to severe storms and thunderstorms that arise when strong updrafts combine with horizontal winds that become stronger at higher altitudes. This combination produces damaging horizontal and vertical winds and is a major source of weather-related casualties. In the warmer climate simulation there is a small class of the most extreme storms with both strong updrafts and strong horizontal winds at higher levels that occur more often, and thus the model suggests that the most violent severe storms and tornadoes may become more common with warming.

The prediction of stronger continental storms and more lightning in a warmer climate is a natural consequence of the tendency of land surfaces to warm more than oceans and for the freezing level to rise with warming to an altitude where lightning-producing updrafts are stronger. These features of global warming are common to all models, but this is the first climate model to explore the ramifications of the warming for thunderstorms.

Lynn Chandler | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/centers/goddard/news/topstory/2007/moist_convection.html

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>