Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA study predicts more severe storms with global warming

03.09.2007
NASA scientists have developed a new climate model that indicates that the most violent severe storms and tornadoes may become more common as Earth’s climate warms.

Previous climate model studies have shown that heavy rainstorms will be more common in a warmer climate, but few global models have attempted to simulate the strength of updrafts in these storms. The model developed at NASA’s Goddard Institute for Space Studies by researchers Tony Del Genio, Mao-Sung Yao, and Jeff Jonas is the first to successfully simulate the observed difference in strength between land and ocean storms and is the first to estimate how the strength will change in a warming climate, including “severe thunderstorms” that also occur with significant wind shear and produce damaging winds at the ground. This information can be derived from the temperatures and humidities predicted by a climate computer model, according to the new study published on August 17 in the American Geophysical Union’s Geophysical Research Letters. It predicts that in a warmer climate, stronger and more severe storms can be expected, but with fewer storms overall.

Global computer models represent weather and climate over regions several hundred miles wide. The models do not directly simulate thunderstorms and lightning. Instead, they evaluate when conditions are conducive to the outbreak of storms of varying strengths. This model first was tested against current climate conditions. It was found to represent major known global storm features including the prevalence of lightning over tropical continents such as Africa and, to a lesser extent, the Amazon Basin, and the near absence of lightning in oceanic storms.

The model then was applied to a hypothetical future climate with double the current carbon dioxide level and a surface that is an average of 5 degrees Fahrenheit warmer than the current climate. The study found that continents warm more than oceans and that the altitude at which lightning forms rises to a level where the storms are usually more vigorous.

These effects combine to cause more of the continental storms that form in the warmer climate to resemble the strongest storms we currently experience.

Lightning produced by strong storms often ignites wildfires in dry areas. Researchers have predicted that some regions would have less humid air in a warmer climate and be more prone to wildfires as a result. However, drier conditions produce fewer storms. "These findings may seem to imply that fewer storms in the future will be good news for disastrous western U.S. wildfires," said Tony Del Genio, lead author of the study and a scientist at NASA’s Goddard Institute for Space Studies, New York. "But drier conditions near the ground combined with higher lightning flash rates per storm may end up intensifying wildfire damage instead."

The central and eastern areas of the United States are especially prone to severe storms and thunderstorms that arise when strong updrafts combine with horizontal winds that become stronger at higher altitudes. This combination produces damaging horizontal and vertical winds and is a major source of weather-related casualties. In the warmer climate simulation there is a small class of the most extreme storms with both strong updrafts and strong horizontal winds at higher levels that occur more often, and thus the model suggests that the most violent severe storms and tornadoes may become more common with warming.

The prediction of stronger continental storms and more lightning in a warmer climate is a natural consequence of the tendency of land surfaces to warm more than oceans and for the freezing level to rise with warming to an altitude where lightning-producing updrafts are stronger. These features of global warming are common to all models, but this is the first climate model to explore the ramifications of the warming for thunderstorms.

Lynn Chandler | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/centers/goddard/news/topstory/2007/moist_convection.html

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>