Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Next Ice Age delayed by rising CO2 levels

30.08.2007
Future ice ages may be delayed by up to half a million years by our burning of fossil fuels. That is the implication of recent work by Dr Toby Tyrrell of the University of Southampton's School of Ocean and Earth Science at the National Oceanography Centre, Southampton.

According to New Scientist magazine, which features Dr Tyrrell's research this week, this work demonstrates the most far-reaching disruption of long-term planetary processes yet suggested for human activity.

Dr Tyrrell's team used a mathematical model to study what would happen to marine chemistry in a world with ever-increasing supplies of the greenhouse gas, carbon dioxide.

The world's oceans are absorbing CO2 from the atmosphere but in doing so they are becoming more acidic. This in turn is dissolving the calcium carbonate in the shells produced by surface-dwelling marine organisms, adding even more carbon to the oceans. The outcome is elevated carbon dioxide for far longer than previously assumed.

Computer modelling in 2004 by a then oceanography undergraduate student at the University, Stephanie Castle, first interested Dr Tyrrell and colleague Professor John Shepherd in the problem. They subsequently developed a theoretical analysis to validate the plausibility of the phenomenon.

The work, which is part-funded by the Natural Environment Research Council, confirms earlier ideas of David Archer of the University of Chicago, who first estimated the impact rising CO2 levels would have on the timing of the next ice age.

Dr Tyrrell said: 'Our research shows why atmospheric CO2 will not return to pre-industrial levels after we stop burning fossil fuels. It shows that it if we use up all known fossil fuels it doesn't matter at what rate we burn them. The result would be the same if we burned them at present rates or at more moderate rates; we would still get the same eventual ice-age-prevention result.'

Ice ages occur around every 100,000 years as the pattern of Earth's orbit alters over time. Changes in the way the sun strikes the Earth allows for the growth of ice caps, plunging the Earth into an ice age. But it is not only variations in received sunlight that determine the descent into an ice age; levels of atmospheric CO2 are also important.

Humanity has to date burnt about 300 Gt C of fossil fuels. This work suggests that even if only 1000 Gt C (gigatonnes of carbon) are eventually burnt (out of total reserves of about 4000 Gt C) then it is likely that the next ice age will be skipped. Burning all recoverable fossil fuels could lead to avoidance of the next five ice ages.

Dr Tyrrell is a Reader in the University of Southampton's School of Ocean and Earth Science. This research was first published in Tellus B, vol 59 p664.

Sarah Watts | alfa
Further information:
http://www.soton.ac.uk

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>