Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Next Ice Age delayed by rising CO2 levels

30.08.2007
Future ice ages may be delayed by up to half a million years by our burning of fossil fuels. That is the implication of recent work by Dr Toby Tyrrell of the University of Southampton's School of Ocean and Earth Science at the National Oceanography Centre, Southampton.

According to New Scientist magazine, which features Dr Tyrrell's research this week, this work demonstrates the most far-reaching disruption of long-term planetary processes yet suggested for human activity.

Dr Tyrrell's team used a mathematical model to study what would happen to marine chemistry in a world with ever-increasing supplies of the greenhouse gas, carbon dioxide.

The world's oceans are absorbing CO2 from the atmosphere but in doing so they are becoming more acidic. This in turn is dissolving the calcium carbonate in the shells produced by surface-dwelling marine organisms, adding even more carbon to the oceans. The outcome is elevated carbon dioxide for far longer than previously assumed.

Computer modelling in 2004 by a then oceanography undergraduate student at the University, Stephanie Castle, first interested Dr Tyrrell and colleague Professor John Shepherd in the problem. They subsequently developed a theoretical analysis to validate the plausibility of the phenomenon.

The work, which is part-funded by the Natural Environment Research Council, confirms earlier ideas of David Archer of the University of Chicago, who first estimated the impact rising CO2 levels would have on the timing of the next ice age.

Dr Tyrrell said: 'Our research shows why atmospheric CO2 will not return to pre-industrial levels after we stop burning fossil fuels. It shows that it if we use up all known fossil fuels it doesn't matter at what rate we burn them. The result would be the same if we burned them at present rates or at more moderate rates; we would still get the same eventual ice-age-prevention result.'

Ice ages occur around every 100,000 years as the pattern of Earth's orbit alters over time. Changes in the way the sun strikes the Earth allows for the growth of ice caps, plunging the Earth into an ice age. But it is not only variations in received sunlight that determine the descent into an ice age; levels of atmospheric CO2 are also important.

Humanity has to date burnt about 300 Gt C of fossil fuels. This work suggests that even if only 1000 Gt C (gigatonnes of carbon) are eventually burnt (out of total reserves of about 4000 Gt C) then it is likely that the next ice age will be skipped. Burning all recoverable fossil fuels could lead to avoidance of the next five ice ages.

Dr Tyrrell is a Reader in the University of Southampton's School of Ocean and Earth Science. This research was first published in Tellus B, vol 59 p664.

Sarah Watts | alfa
Further information:
http://www.soton.ac.uk

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>