Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologist plans volcano safety for Ecuadorians

23.08.2007
A geologist at Washington University in St. Louis is doing his part to make sure that the small Latin American country of Ecuador follows the Boy Scout motto: Be prepared.

Robert Buchwaldt, Ph.D., Washington University lecturer in earth and planetary sciences in Arts & Sciences, is the only scientist from America who sits on an international committee that is seeking ways to address the volcanic threat in Ecuador, especially in Quito, a city of five million nestled against a volcano, Guagua Pichincha, that erupted just two years ago.

Buchwaldt, a couple of German scientists and a mixture of Ecuadorian politicians and citizens comprise the committee, which is called the Ecuadorian Volcanic Hazard Assessment Group. Its task is to develop an emergency plan in case of an eruption, which could happen again soon because magma temperatures are rising, according to Buchwaldt.

"Dealing with the threat of a volcano is not an uncommon problem," Buchwaldt said. "In North America, we have Seattle, which is adjacent to Mount St. Helens and two other volcanoes. They have a plan. We're trying to implement one in Quito, but the Latin American culture is different."

Money and communications problems

A key problem is wealth, or the lack thereof, in Ecuador.

"America is a First World country, but Ecuador is Third World, so financial support is not strong. Setting up seismometers is an expensive process. Hundreds will be needed, but currently there are only two near Quito set up by German researchers."

Ecuador, roughly the size of Nevada, has a whopping 270 volcanoes, twenty of which are active. The most active is Tungurahua, with 70 eruptions over the past 3,000 years.

Buchwaldt said a second major problem is communications.

"As scientists, we need to avoid the academic gobbledygook," he said. "The politicians, though, tend to dummy things down. We're seeking a communications platform that will enable us to communicate between different fields.

"What happens when you get a volcanic eruption, you have excited scientists because it means data. But data mean nothing to a normal citizen sitting there while a one-mile pyroclastic flow starts streaming by."

A pyroclastic flow is a very violent, destructive, gas-rich and fast-moving mass of rock flow from a volcanic vent. Imagine opening up a cola bottle and seeing the white flow of foam that accompanies that — the foam is an indication of gas separating, and that is what you have with the pyroclastic flow.

Buchwaldt said that the committee has plans in effect for public meetings that will educate the citizenry and government officials, explain the dangers and develop escape plans for Quito and other communities.

He made a presentation on projects there and the committee's work at a Goldschmidt Conference, held in Cologne, Germany on August 20-24, 2007.

Buchwaldt is just beginning research in Ecuador, and he has projects in Madagascar and Cameroon. His main interests are geochronology, petrology, and geochemistry.

"I'm interested in using well-established methods to understand the dynamics of systems, especially Earth systems," he said. "Volcanoes interest me greatly because they are very dynamic."

Resemblance to Western Washington state

Buchwaldt notes that western Washington state and Ecuador are similar in that they each are situated along a major subduction zone. A collective zone occurs throughout the Pacific Ocean and is called the Ring of Fire. Most of the volcanism on the planet occurs around these subduction zones. Volcanoes produced in subduction zones have different magmas than those produced in hot spot areas such as in Hawaii. In subduction zones, water is brought down into the mantle where it gets dissolved in the magma and therefore creates a gas-rich magma that produces a very explosive situation. In hot spot volcanoes, water is not involved, so the magma is more viscous and thus flows more easily.

Buchwaldt is looking at the chemistry of different magma deposits to see how different volcanoes evolve and determine the evolution of different volcanoes as well as the kinds of dynamic processes involved in volcanic eruptions. He also is using Geospatial Information Systems technology to detect the dominant flow patterns in the area with the goal of classifying different regions in terms of the severity of their volcanic potential.

What he finds will add to the geological record of Ecuador and the general knowledge base of volcanoes. But his findings also will help Ecuadorians plan city buildings and emergency buildings and escape routes to avoid future volcanic destruction.

During Spring Break 2007, Buchwaldt took 30 members of his Washington University geosciences class to a field trip in Ecuador and the Galapagos Islands to study the differences in volcanoes.

"It was an extremely interesting opportunity for students to actually see real geology, at times as it was happening," he said. "A geologist needs to be outside looking at rocks and minerals. One of the memorable things was standing on a pyroclastic flow that had come down just two months before, and that flow was atop the foundation of a house it had overrun.

"It's kind of scary when you actually stand on a volcano and you feel the rumbling of the volcano mountain when the magma comes up and you see ash coming up at the top of the volcano. We were truly seeing the surface expression of this dynamic planet we're living on."

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>