Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Geologist plans volcano safety for Ecuadorians

A geologist at Washington University in St. Louis is doing his part to make sure that the small Latin American country of Ecuador follows the Boy Scout motto: Be prepared.

Robert Buchwaldt, Ph.D., Washington University lecturer in earth and planetary sciences in Arts & Sciences, is the only scientist from America who sits on an international committee that is seeking ways to address the volcanic threat in Ecuador, especially in Quito, a city of five million nestled against a volcano, Guagua Pichincha, that erupted just two years ago.

Buchwaldt, a couple of German scientists and a mixture of Ecuadorian politicians and citizens comprise the committee, which is called the Ecuadorian Volcanic Hazard Assessment Group. Its task is to develop an emergency plan in case of an eruption, which could happen again soon because magma temperatures are rising, according to Buchwaldt.

"Dealing with the threat of a volcano is not an uncommon problem," Buchwaldt said. "In North America, we have Seattle, which is adjacent to Mount St. Helens and two other volcanoes. They have a plan. We're trying to implement one in Quito, but the Latin American culture is different."

Money and communications problems

A key problem is wealth, or the lack thereof, in Ecuador.

"America is a First World country, but Ecuador is Third World, so financial support is not strong. Setting up seismometers is an expensive process. Hundreds will be needed, but currently there are only two near Quito set up by German researchers."

Ecuador, roughly the size of Nevada, has a whopping 270 volcanoes, twenty of which are active. The most active is Tungurahua, with 70 eruptions over the past 3,000 years.

Buchwaldt said a second major problem is communications.

"As scientists, we need to avoid the academic gobbledygook," he said. "The politicians, though, tend to dummy things down. We're seeking a communications platform that will enable us to communicate between different fields.

"What happens when you get a volcanic eruption, you have excited scientists because it means data. But data mean nothing to a normal citizen sitting there while a one-mile pyroclastic flow starts streaming by."

A pyroclastic flow is a very violent, destructive, gas-rich and fast-moving mass of rock flow from a volcanic vent. Imagine opening up a cola bottle and seeing the white flow of foam that accompanies that — the foam is an indication of gas separating, and that is what you have with the pyroclastic flow.

Buchwaldt said that the committee has plans in effect for public meetings that will educate the citizenry and government officials, explain the dangers and develop escape plans for Quito and other communities.

He made a presentation on projects there and the committee's work at a Goldschmidt Conference, held in Cologne, Germany on August 20-24, 2007.

Buchwaldt is just beginning research in Ecuador, and he has projects in Madagascar and Cameroon. His main interests are geochronology, petrology, and geochemistry.

"I'm interested in using well-established methods to understand the dynamics of systems, especially Earth systems," he said. "Volcanoes interest me greatly because they are very dynamic."

Resemblance to Western Washington state

Buchwaldt notes that western Washington state and Ecuador are similar in that they each are situated along a major subduction zone. A collective zone occurs throughout the Pacific Ocean and is called the Ring of Fire. Most of the volcanism on the planet occurs around these subduction zones. Volcanoes produced in subduction zones have different magmas than those produced in hot spot areas such as in Hawaii. In subduction zones, water is brought down into the mantle where it gets dissolved in the magma and therefore creates a gas-rich magma that produces a very explosive situation. In hot spot volcanoes, water is not involved, so the magma is more viscous and thus flows more easily.

Buchwaldt is looking at the chemistry of different magma deposits to see how different volcanoes evolve and determine the evolution of different volcanoes as well as the kinds of dynamic processes involved in volcanic eruptions. He also is using Geospatial Information Systems technology to detect the dominant flow patterns in the area with the goal of classifying different regions in terms of the severity of their volcanic potential.

What he finds will add to the geological record of Ecuador and the general knowledge base of volcanoes. But his findings also will help Ecuadorians plan city buildings and emergency buildings and escape routes to avoid future volcanic destruction.

During Spring Break 2007, Buchwaldt took 30 members of his Washington University geosciences class to a field trip in Ecuador and the Galapagos Islands to study the differences in volcanoes.

"It was an extremely interesting opportunity for students to actually see real geology, at times as it was happening," he said. "A geologist needs to be outside looking at rocks and minerals. One of the memorable things was standing on a pyroclastic flow that had come down just two months before, and that flow was atop the foundation of a house it had overrun.

"It's kind of scary when you actually stand on a volcano and you feel the rumbling of the volcano mountain when the magma comes up and you see ash coming up at the top of the volcano. We were truly seeing the surface expression of this dynamic planet we're living on."

Tony Fitzpatrick | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>