Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CU-Boulder team discovers first ancient manioc fields in Americas

22.08.2007
Prehistoric manioc plantation buried by volcanic ash about 600 A.D. may help explain how Maya supported dense populations

A University of Colorado at Boulder team excavating an ancient Maya village in El Salvador buried by a volcanic eruption 1,400 years ago has discovered an ancient field of manioc, the first evidence for cultivation of the calorie-rich tuber in the New World.

The manioc field was discovered under roughly 10 feet of ash, said CU-Boulder anthropology Professor Payson Sheets, who has been directing the excavation of the ancient village of Ceren since its discovery in 1978. Considered the best-preserved ancient village in Latin America, Ceren's buildings, artifacts and landscape were frozen in time by the sudden eruption of the nearby Loma Caldera volcano about 600 A.D., providing a unique window on the everyday lives of prehistoric Mayan farmers.

The discovery marks the first time manioc cultivation has been discovered at an archaeological site anywhere in the Americas, said Sheets. The National Geographic Society funded the 2007 CU-Boulder research effort at Ceren, the most recent of five research grants made by NGS to the ongoing excavations by Sheets and his students.

"We have long wondered what else the prehistoric Mayan people were growing and eating besides corn and beans, so finding this field was a jackpot of sorts for us," he said. "Manioc's extraordinary productivity may help explain how the Classic Maya at huge sites like Tikal in Guatemala and Copan in Honduras supported such dense populations."

In June, the researchers used ground-penetrating radar, drill cores and test pits to pinpoint and uncover several large, parallel planting beds separated by walkways, said Sheets. Ash hollows in the planting beds left by decomposed plant material were cast with dental plaster to preserve their shapes and subsequently were identified as manioc tubers, an important, high-carbohydrate food source for Latin Americans today, said Sheets.

Evidence indicated the manioc bushes had just been cut down, most of the tubers harvested and the beds replanted with manioc stalks placed horizontally in the soil to regenerate bushes for the next cycle of growth, he said. The presence of volcanic ash just underneath hand-shaped dirt overhangs in the beds indicates the stalks were planted "just hours before the eruption," he said.

"What we essentially found was a freshly planted manioc field that was 1,400 years old," said Sheets. "Once again, we felt like we were right on the heels of these ancient people because of the exquisite preservation provided by the volcanic ash."

Each hand-shaped planting bed was about three feet wide and two feet high -- about 10 times larger than traditional planting beds for corn -- although the lengths of the rows are still unknown, he said. Each manioc stalk, or cutting, had been carefully placed in the ground with a growth "node" pointing toward the surface to generate a new bush and several nodes pointing down to generate the edible tubers and regular roots, he said.

Archaeologists had suspected ancient Mayans had cultivated and consumed manioc for its high-energy value, he said. Also known as cassava, manioc provides one of the highest yields of food energy per acre per day of any cultivated crop in the world.

The CU-Boulder team is working with scientists at the Smithsonian Institution in Washington, D.C., to develop new soil-analysis techniques to detect starch grains like those from manioc that will work at a wide range of archaeological sites, said Sheets.

"We don't want to find out that Ceren was unique in manioc cultivation," said Sheets. "We hope archaeologists eventually find evidence for this kind of activity at sites throughout the region. From an archaeological standpoint, there are few things as important as discovering the sources of day-to-day subsistence for ancient cultures."

The team also included CU-Boulder anthropology graduate students Christine Dixon and Adam Blanford, geology graduate student Monica Guerra and archaeological geophysicist Larry Conyers. Conyers is a University of Denver faculty member who had worked at Ceren and received his CU-Boulder doctorate under Sheets in 1995.

Sheets and his colleagues previously determined the eruption at Ceren occurred on an early August evening because of the height of corn stalks and the fact that the farming implements had been brought inside but the sleeping mats had not yet been rolled out.

Thus far 12 buildings at Ceren -- believed to have been home to several hundred people -- have been excavated, including living quarters, storehouses, workshops, kitchens, religious buildings and a community sauna. Several dozen other structures located with ground-penetrating radar remain buried under up to 17 feet of ash, said Sheets.

Although the absence of human remains at Ceren initially puzzled scientists, the 1993 discovery that an earthquake rocked the site just prior to the eruption indicated the villagers might have had just enough warning to flee. "They did not even have time to remove their most valued belongings," said Sheets.

Preservation of organic materials at Ceren -- including thatched roofs, house beams, woven baskets, cloth and grain caches -- has been deemed superior to the organic preservation at the Italian site of Pompeii, by archaeologists and vulcanologists who have visited the Salvadoran site from around the world.

Payson Sheets | EurekAlert!
Further information:
http://www.colorado.edu/news/podcasts/

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>