Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Breakthroughs in Geological Dating Imminent

22.08.2007
A breakthrough in geological dating can be expected within the next few years, combining existing methods to yield higher accuracy over longer time scales closer to the earth's origin.

This will bring great benefits not just for earth sciences, but also for other fields that rely on accurate dating over geological time. The developments ushering in a new generation of dating methods were discussed at a recent workshop on geochronological timing organised by the European Science Foundation (ESF).

The earth sciences rely on highly accurate timing to unravel past causes and effects, and understand the forces driving many events from ice ages to mass extinctions. Other scientific disciplines, such as evolutionary biology and climate science, in turn depend on accurate timing of geological processes to provide a baseline for their investigations. While significant progress has been made over recent decades, great uncertainties remain that are inhibiting investigations of major past events and formative processes in the earth sciences. In the case of the dinosaur extinction, knowledge of how long the process took would help resolve whether this was caused by a sudden asteroid strike or more gradually following a period of intense volcanic activity for example.

There was intense interest therefore in the ESF workshop, which came six years after the launch of an international project in the same field, called EARTHTIME. The workshop was organised to recognise and boost Europe's leading position in geochronology. It identified the need to improve the three main dating methods currently used, and cross-calibrate between them where possible to yield even greater accuracy, according to Klaudia Kuiper, scientific convenor of the ESF workshop. "The main outcome is that we first aim to work on the improvement of the numerical tools to calibrate the Geological Time Scale," said Kuiper.

Although these methods currently achieve high-sounding accuracies in the order of 0.5 percent to 1 percent, this can equate to an error of several million years over geological time scales. The objective is to reduce the error to better than 0.1 percent, in other words below an error of 100,000 years over a 100 million year time scale.

The three main tools currently used for dating geological events are argon-argon dating, uranium/lead dating, and astronomical methods. Argon-argon dating measures the level of decay from an isotope of potassium to argon, which occurs predictably over time, also taking account of the proportions of the two different isotopes of argon that form during the process.

Uranium/lead dating, one of the oldest and most refined methods, also exploits radioactive decay. However in this case the measurement is based on a correlation between the decay of two isotopes of uranium occurring at different rates, boosting the accuracy as result.

Astronomical timing is quite different, exploiting long term cyclical changes in the earth's orbit and axis. These cause climate changes that can be measured in sediment deposits, providing a dating method that can be correlated with geological events.

The methods each have pros and cons. Astronomical dating is highly accurate, but only over relatively short times on a geological scale, up to at most 250 million years, which is just 5 percent of the earth's age. Radiometric dating can span the earth's whole history back to 4.5 billion years ago, but with less accuracy, and some uncertainties. Currently the astronomical timing is used for events in the last 23 million years, then argon-argon back to 100 million years, and uranium/lead for older events.

Further progress can be made by combining these methods, with astronomical dating already being used to calibrate radiometric timing over the last 10 million years where the former is highly accurate. According to Kuipers, such progress will usher in a new generation of Geological Time Scale (GTS) measurements that will in turn yield fresh insights into critical events during the earth's history. Kuipers believed these could be just as exciting as some of the insights enabled by the previous generation of dating technologies, such as timing of the great ice ages of the Pleistocene between about 2 million and 11,000 years ago. The hope is that the new generation of timing methods will enable older events to be dated accurately.

The workshop Earthtime: The European Contribution - Integration of High-Precision Geochronology and Astronomical Tuning for Calibration of the Cenozoic and Mesozoic Timescales, was held 22-24 April 2007 in Amsterdam, Netherlands, and was convened by Klaudia Kuiper.

Each year, ESF supports approximately 50 Exploratory Workshops across all scientific domains. These small, interactive group sessions are aimed at opening up new directions in research to explore new fields with a potential impact on developments in science.

Thomas Lau | alfa
Further information:
http://www.esf.org
http://www.esf.org/activities/exploratory-workshops.html

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>