Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists search for prehistoric high

21.08.2007
Not all areas of the Tibetan Plateau rose at the same time, according to researchers who are determining the past elevation of plateau locations by studying the remains of terrestrial plants that once grew there.

"The Tibetan Plateau is responsible for the monsoons in India," says Dr. Pratigya J. Polissar, postdoctoral fellow in geosciences, Penn State. "People have documented ecological changes around the edge of the plateau that may indicate when it was high, but we do not really know when the plateau rose and so we do not know when the monsoon circulation began."

Elevation is a key factor in forces in the Earth's circulation and climate and often large land masses influence climate far beyond the local geographical and geological region. Polissar; Katherine H. Freeman, professor of geosciences, Penn State; and David B. Rowley, professor of geophysical sciences, University of Chicago, looked at lipids preserved in ancient lake sediment that originated in plants growing in the surrounding watershed. The lipids were once part of the waxy coating found on leaves that grew during the late Eocene about 35 million years ago and the early Miocene, 8 to 6 million years ago. These lipids are biomarkers for the plants that generated them.

"We are really interested in the hydrogen in these lipids," says Polissar. "Hydrogen is preserved in the molecules and the hydrogen isotopic composition is preserved."

The researchers are interested in the ratio found between regular hydrogen and deuterium, hydrogen that contains both a proton and neutron in its nucleus and is heavier than normal hydrogen. This hydrogen ratio can disclose where the plants were growing because as air masses rise on the side of a mountain, water, which contains hydrogen, rains out of the air. A proportionally larger amount of deuterium rains out leaving air at higher elevations with a higher percentage of normal hydrogen. The composition of the water that plants take up from the ground is a reflection of the rainwater that falls in that area, so the hydrogen incorporated into the plants can tell us the hydrogen ratio of the rainwater.

By looking at the hydrogen isotope ratios of plants growing at various elevations today and the hydrogen isotope ratios in the water, the correlation between elevation and hydrogen isotope ratio can be established.

However, there are a number of things to consider. The types of plants that grew in the past must be the same as those studied in the present. The researchers used pollen analysis on the ancient samples to determine the composition of the plant population.

They also must consider that plants use hydrogen isotopes in different ways, with some preferring more of one isotope than the other. This preferential uptake can skew the results if it is ignored.

To check their approach, the researchers used a set of three samples from two locations on the Tibetan Plateau. In one location, a pair of samples came from the Miocene and a much earlier time in the Eocene. In the other location, a Miocene sample was paired with previous results by other scientists on Eocene rocks. Two of these samples had elevations previously assigned, using similar analysis of oxygen isotopes taken from carbonates like limestone. The third, a Miocene sample, had an unknown elevation. The two known elevation samples allowed the researchers to test the accuracy of their method.

"No one has done this before on vegetation remains," says Polissar. "Sediments that preserve organic material do not typically contain carbonates. This method would allow us to determine elevations at locations with only organic material."

When the researchers compared the results from their two samples to the elevations derived from carbonate oxygen isotope testing, they found that the organic hydrogen isotope approach worked well. The third sample, from the Miocene, showed an elevation that was much higher than the matching sample from the Eocene.

"This shows that the basin was rising between these two sample dates," says Polissar. "Everywhere else at this time was already high, but this area was low. The whole plateau did not rise at the same time, but the northern portion rose later."

Knowing that the northern portion of the plateau rose later can help climatologists who try to model ancient climate. This knowledge can also help those who model the ancient biological world because different plant communities grow at different elevations because of the differing rainfall and temperatures.

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>