Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Ocean ‘supergyre’ link to climate regulator

Australian scientists have identified the missing deep ocean pathway – or ‘supergyre’ – linking the three Southern Hemisphere ocean basins in research that will help them explain more accurately how the ocean governs global climate.

The new research confirms the current sweeping out of the Tasman Sea past Tasmania and towards the South Atlantic is a previously undetected component of the world climate system’s engine-room – the thermohaline circulation or ‘global conveyor belt’.

Wealth from Oceans Flagship scientist Ken Ridgway says the current, called the Tasman Outflow, occurs at an average depth of 800-1,000 metres and may play an important role in the response of the conveyor belt to climate change.

Published this month in Geophysical Research Letters the findings confirm that the waters south of Tasmania form a ‘choke-point’ linking the major circulation cells in the Southern Hemisphere oceans.

“In each ocean, water flows around anticlockwise pathways or ‘gyres’ the size of ocean basins,” Mr Ridgway says. “These gyres are the mechanism that distribute nutrients from the deep ocean to generate life on the continental shelves and slopes. They also drive the circulation of the world’s oceans, creating currents and eddies and help balance the climate system by transferring ocean heat away from the tropics toward the polar region.”

He says the conventional picture of the Southern Hemisphere mid-latitude circulation comprises basin-wide but quite distinct gyres contained within the Indian, Pacific and Atlantic Oceans. However model simulations had suggested that these gyres are connected.

“Recognising the scales and patterns of these subsurface water masses means they can be incorporated into the powerful models used by scientists to project how climate may change,” he says.The CSIRO team analysed thousands of temperature and salinity data samples collected between 1950 and 2002 by research ships, robotic ocean monitors and satellites in the region between 60°S and the Equator. They identified linkages between these gyres to form a global-scale ‘supergyre’ that transfers water to all three ocean basins.

Mr Ridgway and co-author Mr Jeff Dunn say identification of the supergyre improves the ability of researchers to more accurately explain how the ocean governs global climate.

Completed as part of the BLUElink ocean forecasting project, this research provides the missing deep-flow connection between the Pacific and Indian Oceans. It has long been known that north of Australia a system of currents in the ocean’s upper 300m, called the Indonesian Throughflow, drains water from the Pacific into the Indian Ocean through the Indonesian archipelago – a process which influences Australian rainfall.

Mr Ridgway says Tasmania figures as a critical converging point providing a northern boundary to the mid-water funnel that is bordered at latitudes near 50°S.

“The interconnected gyre system and the East Australian Current provide the mechanism by which SubAntarctic Mode Water and Antarctic Intermediate Water are distributed between the ocean basins,” he says. “The flows of these water masses have strong influences on the global climate and so monitoring changes in the transport of the Tasmanian connection may be an important measurement of the state of the global climate system.

“Recognising the scales and patterns of these subsurface water masses means they can be incorporated into the powerful models used by scientists to project how climate may change,” he says.

Craig Macaulay | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Gas hydrate research: Advanced knowledge and new technologies
23.03.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

nachricht New technologies and computing power to help strengthen population data
22.03.2018 | University of Southampton

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>