Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean ‘supergyre’ link to climate regulator

17.08.2007
Australian scientists have identified the missing deep ocean pathway – or ‘supergyre’ – linking the three Southern Hemisphere ocean basins in research that will help them explain more accurately how the ocean governs global climate.

The new research confirms the current sweeping out of the Tasman Sea past Tasmania and towards the South Atlantic is a previously undetected component of the world climate system’s engine-room – the thermohaline circulation or ‘global conveyor belt’.

Wealth from Oceans Flagship scientist Ken Ridgway says the current, called the Tasman Outflow, occurs at an average depth of 800-1,000 metres and may play an important role in the response of the conveyor belt to climate change.

Published this month in Geophysical Research Letters the findings confirm that the waters south of Tasmania form a ‘choke-point’ linking the major circulation cells in the Southern Hemisphere oceans.

“In each ocean, water flows around anticlockwise pathways or ‘gyres’ the size of ocean basins,” Mr Ridgway says. “These gyres are the mechanism that distribute nutrients from the deep ocean to generate life on the continental shelves and slopes. They also drive the circulation of the world’s oceans, creating currents and eddies and help balance the climate system by transferring ocean heat away from the tropics toward the polar region.”

He says the conventional picture of the Southern Hemisphere mid-latitude circulation comprises basin-wide but quite distinct gyres contained within the Indian, Pacific and Atlantic Oceans. However model simulations had suggested that these gyres are connected.

“Recognising the scales and patterns of these subsurface water masses means they can be incorporated into the powerful models used by scientists to project how climate may change,” he says.The CSIRO team analysed thousands of temperature and salinity data samples collected between 1950 and 2002 by research ships, robotic ocean monitors and satellites in the region between 60°S and the Equator. They identified linkages between these gyres to form a global-scale ‘supergyre’ that transfers water to all three ocean basins.

Mr Ridgway and co-author Mr Jeff Dunn say identification of the supergyre improves the ability of researchers to more accurately explain how the ocean governs global climate.

Completed as part of the BLUElink ocean forecasting project, this research provides the missing deep-flow connection between the Pacific and Indian Oceans. It has long been known that north of Australia a system of currents in the ocean’s upper 300m, called the Indonesian Throughflow, drains water from the Pacific into the Indian Ocean through the Indonesian archipelago – a process which influences Australian rainfall.

Mr Ridgway says Tasmania figures as a critical converging point providing a northern boundary to the mid-water funnel that is bordered at latitudes near 50°S.

“The interconnected gyre system and the East Australian Current provide the mechanism by which SubAntarctic Mode Water and Antarctic Intermediate Water are distributed between the ocean basins,” he says. “The flows of these water masses have strong influences on the global climate and so monitoring changes in the transport of the Tasmanian connection may be an important measurement of the state of the global climate system.

“Recognising the scales and patterns of these subsurface water masses means they can be incorporated into the powerful models used by scientists to project how climate may change,” he says.

Craig Macaulay | EurekAlert!
Further information:
http://www.csiro.au

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>