Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gold Obtained From A Decayed Stump

17.08.2007
Specialists of several institutes of Ulan-Ude, Irkutsk and Novosibirsk have found out that biogeochemical anomalies in complex ore deposit regions were formed by microbes and trees.

They perform the gold-diggers’ function in the forests that grow above ore bodies – within multiple years they draw soluble salts out of the soil and die off leaving behind the concentrate with “enormous” precious metals content.

The researchers found native gold, silver and platinum salts in the dust of decayed stumps. A ton of their ashes contains 3 kilograms of silver, nearly 200 milligrams of gold and 5 grams of platinum.

The oxidation zone of some ore bodies is placed only at a distance of a meter and a half to three meters from the ground surface, and the tree roots can reach the zone. That is why, the researchers believe, the soil contains almost as much noble elements as the ore does. For centuries, trees and microorganisms gradually sucked them out of the depth and laid in the soil. A living substance decayed, washed out and turned into carbonic acid gas, but metals remained intact.

The researchers investigated mineralogical composition of protore and oxidized ores from the Dovatka and Mykert-Sanjeevsky deposits. It has turned out that native gold, silver and minerals, which include platinum, palladium, iridium, rhodium and ruthenium, are contained in the extinct bacteria capsules. The mineralogical composition of particles of bacterial origin turned out to be almost identical in the dust, soil and oxidized ores. Consequently, biomass of the trees, (reformed by bacteria), growing above the ore bodies’ oxidation zones is as if their natural continuation or their overground part.

There is peculiar division of labor among bacteria in the course of soil enrichment by precious metals. Sulfur-oxidizing bacteria leach minerals, i.e., transfer minerals from not readily soluble forms into labile forms, and iron bacteria glue them into new granules or nuggets. Trees assimilate the most readily soluble substances, which are later found in the cells of organolytic microbes feeding on dead timber. The latter also ensures normal vital functions of the first two groups.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>