Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sunspot abundance linked to heavy rains in East Africa

A new study reveals correlations between plentiful sunspots and periods of heavy rain in East Africa.

Intense rainfall in the region often leads to flooding and disease outbreaks.

The analysis by a team of U.S. and British researchers shows that unusually heavy rainfalls in East Africa over the past century preceded peak sunspot activity by about one year. Because periods of peak sunspot activity, known as solar maxima, are predictable, so too are the associated heavy rains that precede them, the researchers propose.

"With the help of these findings, we can now say when especially rainy seasons are likely to occur, several years in advance," says paleoclimatologist and study leader Curt Stager of Paul Smith's College in Paul Smiths, New York. Forewarned by such predictions, public health officials could ramp up prevention measures against insect-borne diseases long before epidemics begin, he adds.

The sunspot-rainfall analysis is scheduled to appear on 7 August in the Journal of Geophysical Research - Atmospheres, a publication of the American Geophysical Union.

Increasing sunspot numbers indicate a rise in the sun's energy output. Sunspot abundance peaks on an 11-year cycle. The next solar maximum is expected in 2011-2012. If the newfound pattern holds, rainfall would also peak the year before.

"We expect East Africa to experience a major intensification of rainy season precipitation, along with widespread Rift Valley Fever epidemics, a year or so before the solar maximum of 2011-2012," the team reports. Because mosquitoes and other disease-carrying insects thrive in wet conditions, heavy rains may herald outbreaks of diseases such as Rift Valley Fever.

The new analysis relies on rainfall data going back a century. The scientists also used historical records of water levels at lakes Victoria, Tanganyika, and Naivasha.

The work counters previous research that found no connection between sunspot cycles and rainfall in East Africa. Stager's team concludes that, although the link between sunspots and rainfall was weak between 1927 and 1968, the cyclic pattern held true throughout the 20th century. Previous statistical analysis discounted the link for a variety of reasons, including the influence of El Nino and other climatic disturbances not associated with sunspots.

Scientists have investigated apparent correlations between solar variability and Lake Victoria's water levels since the beginning of the last century, says co-author Alexander Ruzmaikin of NASA's Jet Propulsion Laboratory in Pasadena, California. The new research "shows that these correlations are, in fact, not accidental, effectively resolving a longstanding historical puzzle and improving our knowledge of how solar variability affects Africa's climate," he adds.

Stager, Ruzmaikin and their colleagues offer several reasons why sunspot peaks may affect rainfall. In a simple scenario, increased solar energy associated with sunspots heats both land and sea, forcing moist air to rise and triggering precipitation.

While sunspot peaks augur extraordinarily wet rainy seasons, heavy rains are possible at other times as well, Stager acknowledges. But, most of the rainiest times, he says, are consistently coupled with the predictable rhythms of sunspot peaks. And, to be forewarned is to be forearmed.

"The hope is that people on the ground will use this research to predict heavy rainfall events," Stager says. "Those events lead to erosion, flooding, and disease."

The National Science Foundation funded the study.

Peter Weiss | AGU
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>