Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alaskan earthquake in 2002 set off tremors on Vancouver Island

02.08.2007
Perhaps it was just a matter of sympathy, but tremors rippled the landscape of Vancouver Island, the westernmost part of British Columbia, in 2002 during a major Alaskan earthquake. Geoscientists at the University of Washington have found clear evidence that the two events were related.

Tremor episodes have long been observed near volcanoes and more recently around subduction zones, regions where the Earth's tectonic plates are shifting so that one slides beneath another. Tremors in subduction zones are associated with slow-slip events in which energy equivalent to a moderate-sized earthquake is released in days or weeks, rather than seconds.

Now researchers studying seismograph records have pinpointed five tremor bursts on Vancouver Island on Nov. 3, 2002, the result of a magnitude 7.8 earthquake on the Denali fault in the heart of Alaska.

As surface waves, called Love waves, shook Vancouver Island they triggered tremors underneath the island in the subduction zone where the Explorer tectonic plate slides beneath the North American plate. The tremors were measured by seismometers along roughly the northern two-thirds of the island.

"What we found is that when the waves pushed the North American plate to the southwest, the tremor episode turned on and when the motion reversed it turned off," said Justin Rubinstein, a UW postdoctoral researcher in Earth and space sciences and lead author of a paper describing the work published in the Aug. 2 edition of Nature.

Though the Denali quake was mostly felt in Alaska, its effects were apparent thousands of miles away. It sloshed lakes from Seattle to Louisiana, muddied wells as far east as Pennsylvania and triggered small earthquakes in seismic zones across the Western United States.

Still, finding evidence of tremors on Vancouver Island was unusual.

"A few people have seen tremor episodes triggered by earthquakes, but not as clearly as we have. This is by far the clearest and easiest to interpret," said co-author John Vidale, a UW professor of Earth and space sciences and director of the Pacific Northwest Seismic Network.

"This shows us it's just like a regular fault – you add stress and it slips," Vidale said. "It's like regular faulting but on a different time scale."

Other authors are Joan Gomberg of the U.S. Geological Survey in Seattle and UW researchers Paul Bodin, Kenneth Creager and Stephen Malone.

An earthquake typically will appear suddenly on a seismograph, while the much more subtle ground motion from a tremor burst gradually emerges from the background noise and then fades again, Rubinstein said.

By comparison, tremors typically produce the strongest seismic signals in a slow-slip event, in which seismic energy is released very gradually during periods as long as three weeks.

In this case, the authors suggest that the force of the Love waves induced slow slip on the interface between the North American and Explorer tectonic plates near Vancouver Island and triggered the tremor bursts, each lasting about 15 seconds.

"That made it easier for us to observe because there were these five distinct bursts," Rubinstein said. "Normally you are not going to feel these tremors. The shaking in the tremors we observed was 1,000 times smaller than the surface waves from the earthquake."

Being able to spot the tremors was largely a matter of distance and timing, Vidale said.

"We were able to separate the tremor signal from that of the distant earthquake because the surface waves had traveled more than 1,200 miles, losing the high-frequency vibrations that would have masked the high-frequency tremor vibrations," Vidale said.

While the tremors were recorded a great distance from the rupture that triggered the Denali earthquake, the scientists suggest the same process could occur closer to the fault and might actually be important in the rupture process.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Earth Sciences:

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht What makes corals sick?
11.12.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

Large-scale battery storage system in field trial

11.12.2017 | Power and Electrical Engineering

See, understand and experience the work of the future

11.12.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>