Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alaskan earthquake in 2002 set off tremors on Vancouver Island

02.08.2007
Perhaps it was just a matter of sympathy, but tremors rippled the landscape of Vancouver Island, the westernmost part of British Columbia, in 2002 during a major Alaskan earthquake. Geoscientists at the University of Washington have found clear evidence that the two events were related.

Tremor episodes have long been observed near volcanoes and more recently around subduction zones, regions where the Earth's tectonic plates are shifting so that one slides beneath another. Tremors in subduction zones are associated with slow-slip events in which energy equivalent to a moderate-sized earthquake is released in days or weeks, rather than seconds.

Now researchers studying seismograph records have pinpointed five tremor bursts on Vancouver Island on Nov. 3, 2002, the result of a magnitude 7.8 earthquake on the Denali fault in the heart of Alaska.

As surface waves, called Love waves, shook Vancouver Island they triggered tremors underneath the island in the subduction zone where the Explorer tectonic plate slides beneath the North American plate. The tremors were measured by seismometers along roughly the northern two-thirds of the island.

"What we found is that when the waves pushed the North American plate to the southwest, the tremor episode turned on and when the motion reversed it turned off," said Justin Rubinstein, a UW postdoctoral researcher in Earth and space sciences and lead author of a paper describing the work published in the Aug. 2 edition of Nature.

Though the Denali quake was mostly felt in Alaska, its effects were apparent thousands of miles away. It sloshed lakes from Seattle to Louisiana, muddied wells as far east as Pennsylvania and triggered small earthquakes in seismic zones across the Western United States.

Still, finding evidence of tremors on Vancouver Island was unusual.

"A few people have seen tremor episodes triggered by earthquakes, but not as clearly as we have. This is by far the clearest and easiest to interpret," said co-author John Vidale, a UW professor of Earth and space sciences and director of the Pacific Northwest Seismic Network.

"This shows us it's just like a regular fault – you add stress and it slips," Vidale said. "It's like regular faulting but on a different time scale."

Other authors are Joan Gomberg of the U.S. Geological Survey in Seattle and UW researchers Paul Bodin, Kenneth Creager and Stephen Malone.

An earthquake typically will appear suddenly on a seismograph, while the much more subtle ground motion from a tremor burst gradually emerges from the background noise and then fades again, Rubinstein said.

By comparison, tremors typically produce the strongest seismic signals in a slow-slip event, in which seismic energy is released very gradually during periods as long as three weeks.

In this case, the authors suggest that the force of the Love waves induced slow slip on the interface between the North American and Explorer tectonic plates near Vancouver Island and triggered the tremor bursts, each lasting about 15 seconds.

"That made it easier for us to observe because there were these five distinct bursts," Rubinstein said. "Normally you are not going to feel these tremors. The shaking in the tremors we observed was 1,000 times smaller than the surface waves from the earthquake."

Being able to spot the tremors was largely a matter of distance and timing, Vidale said.

"We were able to separate the tremor signal from that of the distant earthquake because the surface waves had traveled more than 1,200 miles, losing the high-frequency vibrations that would have masked the high-frequency tremor vibrations," Vidale said.

While the tremors were recorded a great distance from the rupture that triggered the Denali earthquake, the scientists suggest the same process could occur closer to the fault and might actually be important in the rupture process.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>