Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alaskan earthquake in 2002 set off tremors on Vancouver Island

02.08.2007
Perhaps it was just a matter of sympathy, but tremors rippled the landscape of Vancouver Island, the westernmost part of British Columbia, in 2002 during a major Alaskan earthquake. Geoscientists at the University of Washington have found clear evidence that the two events were related.

Tremor episodes have long been observed near volcanoes and more recently around subduction zones, regions where the Earth's tectonic plates are shifting so that one slides beneath another. Tremors in subduction zones are associated with slow-slip events in which energy equivalent to a moderate-sized earthquake is released in days or weeks, rather than seconds.

Now researchers studying seismograph records have pinpointed five tremor bursts on Vancouver Island on Nov. 3, 2002, the result of a magnitude 7.8 earthquake on the Denali fault in the heart of Alaska.

As surface waves, called Love waves, shook Vancouver Island they triggered tremors underneath the island in the subduction zone where the Explorer tectonic plate slides beneath the North American plate. The tremors were measured by seismometers along roughly the northern two-thirds of the island.

"What we found is that when the waves pushed the North American plate to the southwest, the tremor episode turned on and when the motion reversed it turned off," said Justin Rubinstein, a UW postdoctoral researcher in Earth and space sciences and lead author of a paper describing the work published in the Aug. 2 edition of Nature.

Though the Denali quake was mostly felt in Alaska, its effects were apparent thousands of miles away. It sloshed lakes from Seattle to Louisiana, muddied wells as far east as Pennsylvania and triggered small earthquakes in seismic zones across the Western United States.

Still, finding evidence of tremors on Vancouver Island was unusual.

"A few people have seen tremor episodes triggered by earthquakes, but not as clearly as we have. This is by far the clearest and easiest to interpret," said co-author John Vidale, a UW professor of Earth and space sciences and director of the Pacific Northwest Seismic Network.

"This shows us it's just like a regular fault – you add stress and it slips," Vidale said. "It's like regular faulting but on a different time scale."

Other authors are Joan Gomberg of the U.S. Geological Survey in Seattle and UW researchers Paul Bodin, Kenneth Creager and Stephen Malone.

An earthquake typically will appear suddenly on a seismograph, while the much more subtle ground motion from a tremor burst gradually emerges from the background noise and then fades again, Rubinstein said.

By comparison, tremors typically produce the strongest seismic signals in a slow-slip event, in which seismic energy is released very gradually during periods as long as three weeks.

In this case, the authors suggest that the force of the Love waves induced slow slip on the interface between the North American and Explorer tectonic plates near Vancouver Island and triggered the tremor bursts, each lasting about 15 seconds.

"That made it easier for us to observe because there were these five distinct bursts," Rubinstein said. "Normally you are not going to feel these tremors. The shaking in the tremors we observed was 1,000 times smaller than the surface waves from the earthquake."

Being able to spot the tremors was largely a matter of distance and timing, Vidale said.

"We were able to separate the tremor signal from that of the distant earthquake because the surface waves had traveled more than 1,200 miles, losing the high-frequency vibrations that would have masked the high-frequency tremor vibrations," Vidale said.

While the tremors were recorded a great distance from the rupture that triggered the Denali earthquake, the scientists suggest the same process could occur closer to the fault and might actually be important in the rupture process.

Vince Stricherz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>