Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Was El Niño unaffected by the Little Ice Age ?

27.03.2002


An extremely intense El Niño event in 1983 prompted an international surveillance programme, involving the deployment of moored or drift measurement buoys and observation satellites. This research effort is proving to be fruitful. The data obtained provide a key to understanding how the two components of the now-famous two-phase system El Niño Southern Oscillation (ENSO) -El Niño and its reverse counterpart La Niña- are generated. Forecasting models for three months in advance are quite reliable. However, the knowledge acquired comes from observations which are limited in time and therefore cannot reveal any longer-term variability in the Pacific climate. This is particularly so for ENSO prediction as its strength and phasing can vary widely over a given century or from one century to another. It is therefore difficult now to determine the impact of the present-day global warming on El Niño.



With the aim of improving climate models, research teams are studying periods of the past during which the climate was different from that of the present day. They are investigating especially the extent to which the ENSO phenomenon occurred at the time with the same frequency and intensity. IRD scientists from the Nouméa centre, in conjunction with the College of Marine Science (University of South Florida), have studied a colony of Porites (massive corals) which has been building up since the mid XVIIth century. This colony yields pure signals, by way of trace element analysis involving coupled Sr/Ca and U/Ca ratio determination, on the changes in the sea surface temperature (SST) that have occurred over 350 years.
The team focused its attention on a particularly cold period (1701-1761), which occurred in the middle of the Little Ice Age (1400 to 1850 A.D.). At this time, temperatures in temperate latitudes of the Northern Hemisphere were between 1 and 2 °C lower than average figures recorded at present. Drill-core coral samples taken from near the Amédée Lighthouse on the South-West side of New Caledonia show that the Little Ice Age also prevailed in the tropical South-West Pacific, with an average cooling of around 1°C. Was El Niño, which now manifests itself in this area of the Pacific every two to seven years by a fall in SSTs (by 0.5 to 1.5°C), reinforced by this generalized cooling? The reconstitution of a composite monthly SST record over the first 60 years of the XVIIIth century has led the researchers to some surprising observations. El Niño’s behaviour then was similar to what it is now. In spite of a decrease in average temperatures, neither the strength nor the frequency of El Niño therefore appears to have been affected, even during the very coldest period.

The New Caledonia corals have, however, recorded a much more pronounced interdecadal oscillation (a period of 15 to 20 years) than is now observed : in 1720, 1730 and 1748 in particular decreases in annual average SSTs exceeded 1°C. This is an important result. The scientific community is now considering if there is interaction between El Niño (which recurs every 2 to 7 years) and lower-frequency climatic phenomena (recurrence every 10 to 60 years). The Amédée Lighthouse corals may not have shed new light on that, but they have proved they can yield useful information on these low-frequency cycles over time.



1. Massive corals are considered as the best memory of climatic variability of the tropical oceans. The coral skeleton incorporates a continual record, sometimes covering several centuries, of temperature, salinity and sunshine fluctuations. The fast formation rate and the existence of seasonal growth bands make them an ideal material for studying recent palaeoclimatology in relation with El Niño.
2. A 1°C decrease in average annual temperatures.

Marie-Lise Sabrie | alphagalileo
Further information:
http://www.ird.fr

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

Hope to discover sure signs of life on Mars? New research says look for the element vanadium

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>