Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA mission highlighted at remote sensing conference

31.07.2007
The International Geoscience and Remote Sensing Symposium, entitled ‘Sensing and Understanding our Planet,’ took place from 23 to 27 July 2007 in Barcelona, Spain, bringing together more than 1400 participants. ESA personnel presented Earth Explorer missions, particularly the upcoming Soil Moisture and Ocean Salinity mission aimed at advancing our knowledge of the water cycle.

The International Geoscience and Remote Sensing Symposium (IGARSS) is a major annual event sponsored by the Geoscience and Remote Sensing Society to bring scientists, engineers and community leaders from all over the world to discuss the latest research findings and up-to-date technology for better understanding Earth.

IGARSS 2007 General Chairman, Prof. Ignasi Corbella, said: "Information gathered by all sensors and techniques must be wisely used mainly to understand our Earth. This will improve prediction of natural disasters or global climate change and provide tools to mitigate their consequences.

"As experts on the leading-edge technologies of Earth Observation (EO), we should play a prominent role in achieving these goals. This is our contribution to the important task of assuring people of all around the world access to resources for their subsistence without endangering the fragile equilibrium of our planet."

With their unique view from space, satellites provide objective coverage across both space and time enabling a better understanding and improved management of the Earth and its environment. ESA’s EO satellites have given Europe a leading role in understanding the Earth’s climate, weather and environment.

Scheduled for launch in late 2008, the Soil Moisture and Ocean Salinity (SMOS) mission – the second Earth Explorer mission to be developed as part of ESA's Living Planet Programme – will contribute to furthering our knowledge of the Earth's water cycle and lead to better weather and extreme-event forecasting.

SMOS was the subject of a full day session on Thursday, with presentations covering instruments technology, calibration techniques and retrieval algorithms. SMOS will demonstrate a new measuring technique by adopting a completely different approach in the field of observing the Earth from space. A novel instrument has been developed that is capable of deriving both soil moisture and ocean salinity by capturing images of emitted microwave radiation around the frequency of 1.4 GHz (L-band). SMOS will carry the first-ever, polar-orbiting, space-borne, 2-D interferometric radiometer.

"It has been a big challenge to get this technology working but from the tests done so far on the ground, it appears we have got it right," ESA’s SMOS Project Manager Achim Hahne said. "Of course the real proof will come once we have launched the satellite and started analysing the measurements."

Although soil only holds a small percentage of the total global water budget, soil moisture plays an important role in the global water cycle as it controls vegetation growth to a large extent. Because in-situ measurements of soil moisture are sparse, more data are urgently required if we are to better our understanding of the water cycle so that the forecasting of climate, weather and extreme-events can be improved.

The same is true for data on ocean salinity. There are few historical measurement data, and only a small fraction of the ocean is currently sampled on a regular basis. Salinity and temperature determine the density of seawater, and in turn, density is an important factor driving the currents in our oceans. Ocean circulation plays a crucial role in moderating the climate by, for example, transporting heat from the Equator to the poles. Ocean salinity is therefore one of the key variables for monitoring and modelling ocean circulation.

The next IGARSS symposium will take place in Boston, Massachusetts, from 7 to 11 July 2008.

Mariangela D'Acunto | alfa
Further information:
http://www.esa.int/esaEO/SEMNM9WUP4F_planet_0.html

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

Melting solid below the freezing point

23.01.2017 | Materials Sciences

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>