Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

By ice flow to the North Pole

24.07.2007
An 8-month voyage through the Arctic Ocean, without ship or travel route; North Pole drifting station NP-35 represents an unusual project of the International Polar Year

At the end of August, an unusual expedition under Russian leadership will leave for the Arctic Ocean. One of the participants is Jürgen Graeser of the Alfred Wegener Institute for Polar and Marine Research, one of the research centres of the Helmholtz Association. For the first time in the history of Russian research using drifting stations, a German researcher will take part in the North Pole drifting station NP-35.

With his data recordings of the atmosphere, Graeser will supplement measurements carried out by the Russian project partners, who will be focusing their investigations on sea ice, primarily performing measurements close to the ice. Through this collaboration, the project partners intend to advance the currently patchy data situation in the Arctic and hope to gain a better understanding of these key regions for global climate change.

The Expedition

Experience with regular Russian drifting stations in the pack ice dates back to 1952 when the research station NP-2 was launched. Whereas previous drifting stations were dedicated exclusively to Russian research, the international station planned within the framework of the International Polar Year will, for the first time, include a German participant of the Alfred Wegener Institute, Jürgen Graeser. The planned project will be carried out in conjunction with the Arctic and Antarctic Research Institute (AARI) in St Petersburg. On August 29, 2007, a total of 36 expedition participants will board the Russian research vessel ‘Akademik Fedorov’ in the Siberian harbour of Tiksi.

In the vicinity of Wrangel Island, i.e. between 80 and 85 degrees northern latitude and between 170 degrees eastern and 170 degrees western longitude, a stable ice floe will be chosen as the base for the drifting station ‘North Pole 35’ (NP-35). The selection will be based on long-term satellite observations of the ice and will be verified by helicopter from the research vessel. During the course of winter, the ice floe will drift in the Arctic Ocean and across the North Pole. During the drift, a variety of measurements carried out at the station will provide information about current climate change. The ‘Akademik Fedorov’ is scheduled to evacuate the station after approximately one year. With regard to over-wintering personnel, it is planned to use ‘Polar 5’, the research aircraft of the Alfred Wegener Institute, to fly out Jürgen Graeser and five Russian colleagues after approximately eight months, in April 2008. For this purpose, a landing strip will be constructed on the ice.

The research programme

The Russian colleagues will be investigating the upper ocean layer and sea ice, as well as snow cover. Atmospheric measurements of meteorological parameters such as temperature, wind, humidity and air pressure, will be added through recordings of trace gases such as carbon dioxide and ozone. Jürgen Graeser will examine two topics. On the one hand, he will use a captive balloon system to measure meteorological parameters in the so-called planetary boundary layer, which is the lowest layer of the atmosphere extending to approximately 1500 metres. In addition, he will use ozone sensors to measure the ozone layer in the stratosphere up to approximately 30 kilometres altitude.

Over-wintering

Jürgen Graeser has been a technician at the research unit Potsdam of the Alfred Wegener Institute and has many years of experience with Arctic and Antarctic expeditions. His special areas of interest are aerology and meteorology. His expertise includes balloon-based, radiation and meteorological measurements.

Background

The Arctic represents a key region for global climate change. Measurements of sea ice and atmospheric parameters in the Arctic Ocean are still incomplete. Through the current project, researchers intend to identify key processes in the atmosphere and alterations of the sea ice cover in order to examine the coupling of sea ice and atmosphere. The project is one of many during the International Polar Year. More than 50,000 scientists and technical staff from over 60 countries are joining force to explore the polar regions. Their goal is to study the role of the Arctic and Antarctic in shaping the climate and the earth’s ecosystems.

Project ‘Planetary Boundary Layer’

The planetary boundary layer (PBL) identifies the lowest atmospheric layer, extending from the surface to approximately 1500 metres altitude. In the Arctic, this layer is characterised by frequent temperature inversions, i.e. by very stable atmospheric stratification which suppresses vertical movements of the air. A realistic representation of the planetary boundary layer is crucial for the construction of climate models, as it is this layer that determines the lower marginal conditions for all calculations. Particularly, the investigation of processes influenced directly by the boundary layer, requires exact knowledge of the state of the PBL.

AWI scientists in Potsdam use the regional climate model HIRHAM to construct mesoscale fields of pressure, temperature and wind in which cyclones (low pressure regions) and their trajectories are identified. Specifically, they are examining the relationship between cyclone development and various surface conditions (e.g. sea ice cover). Elucidating the connection between the Arctic planetary boundary layer and mesoscale cyclones and their trajectories is the goal of these investigations.

Project ‘Ozone Layer’

Discovery of the Antarctic ozone hole in 1985 triggered intensive exploration efforts of the polar ozone layer. This layer is located between 15 and 25 kilometres altitude in the stratosphere. Many chemical processes of ozone depletion in the Antarctic have since been explained, and the connection of ozone destruction with anthropogenic emissions of chlorofluorocarbons (CFCs) and halons has been proven beyond doubt.

During specific winters, severe ozone losses over the Arctic, and hence much closer to home, have already contributed to a reduction in ozone layer thickness over Europe – leading to an increase of harmful ultraviolet radiation on the earth’s surface. However, to date the ozone depletion in the Arctic is not as pronounced as over the Antarctic. Compared to the Arctic, ozone layer thickness in the Antarctic is much more variable, with only about half of the observed inter-annual variability explained by known chemical mechanisms. Hence, dynamic processes which remain only partly understood are equally important in determining thickness of the ozone layer over the Arctic as the chemical decomposition of ozone.

At the Arctic station of the Alfred Wegener Institute in Ny Ålesund on Spitsbergen (79°N), for instance, a strong annual ozone variation of 30 percent was detected at an altitude of 25 to 30 kilometres. Apparently, it is synchronised with variability of the sun, but cannot be explained by known chemical or other dynamic processes. Investigating the cause of this variability will be the focus of ozone measurements at NP-35. Data records from the drifting station will, for the first time, produce high resolution vertical profiles of ozone distribution in the central Arctic, north of 82 degrees latitude – currently a blank spot on the global ozone distribution map. These unique data will be combined with existing ozone profiles from the Arctic and Sub-Arctic. Calculations of air movement in conjunction with chemical models will contribute to an understanding of seasonal and annual variability of stratospheric ozone in the Arctic.

Angelika Dummermuth | EurekAlert!
Further information:
http://www.awi.de
http://www.awi.de/de/aktuelles_und_presse/pressemitteilungen/

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

A Nano-Roundabout for Light

09.12.2016 | Physics and Astronomy

Further Improvement of Qubit Lifetime for Quantum Computers

09.12.2016 | Physics and Astronomy

New weapon against Diabetes

09.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>