Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA’s Earth Explorer gravity satellite on show

20.07.2007
GOCE, ESA’s first satellite dedicated to measuring the Earth’s gravity field, has been presented to the press today in Turin, Italy, before being shipped to ESTEC – the space agency’s research and technology centre in the Netherlands – for final testing.

The Gravity field and steady-state Ocean Circulation Explorer(GOCE), the first core Earth Explorer mission to be developed as part of ESA's Living Planet Programme, will significantly advance our knowledge of how the Earth works and provide insight into ocean circulation, sea-level change, climate change, volcanism and earthquakes.

The spacecraft has been in Italy at Thales Alenia Space, the prime contractor for the development, integration and testing, for roughly nine months where the last subsystems and the payload were integrated on its platform.

Speaking at today’s media event, Carlo Alberto Penazzi, President and Chief Executive Officer of Thales Alenia Space in Italy, said: "We are especially proud to have played a major role in this ESA project, which represents a crucial step forward in increasing our knowledge of the structure of our planet and its well-being."

ESA GOCE Project Manager, Danilo Muzi highlighting the role of industry in this very challenging satellite’s development, said: "Forty-five companies distributed over 13 European countries have been working with ESA on the design of the satellite since 2001. The development of the GOCE satellite represents genuine European industrial cooperation."

"ESA's gravity satellite will measure Earth's gravity from place to place around the globe to provide a uniform global picture. It will do this with a level of detail and accuracy never before achieved," ESA GOCE Project Scientist, Mark Drinkwater, said. "This fundamental reference dataset will give access to new scientific insights into ocean circulation and its impact on climate, as well as into the structure of the interior of the Earth in critical locations such as earthquake and volcanic zones."

Because the gravitational signal is stronger closer to the Earth, GOCE has been designed to fly in a particularly low orbit - at an altitude of just 250 km. However, the remaining atmosphere at low altitudes creates a demanding environment for the satellite and presented a challenge for its design.

Unlike other missions where various independent instruments are carried aboard the spacecraft, GOCE is unique in that the instrumentation actually forms part of the structure of the satellite. A completely stable, rigid and unchanging local environment is required to acquire extremely high fidelity ‘true’ gravity readings, so the spacecraft intentionally has no mechanical moving parts.

The newly developed primary instrument - the gravity gradiometer - measures the terrestrial gravitational field thanks to a set of six ultra-sensitive capacitive sensors. In order to attain the required sensitivity, the gradiometer is combined with a precise GPS-based Satellite-to-Satellite Tracking Instrument to provide accurate three-dimensional positioning of the satellite along its orbit.

Once delivered to ESTEC in Noordwijk, the Netherlands, the spacecraft and gradiometer will undergo the final integration and environmental testing programme to make sure everything is in order to withstand the rigours of launch and the hostile conditions it will experience in space.

In spring 2008, GOCE will be launched on a Rockot launcher from the Plesetsk Cosmodrome in north-western Russia, under the responsibility of the German-Russian launch operator Eurockot.

Mariangela D'Acunto | alfa
Further information:
http://www.esa.int/esaEO/SEM49CB474F_planet_0.html

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>