Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catastrophic flooding changes the course of British history

19.07.2007
A catastrophic megaflood separated Britain from France hundreds of thousands of years ago, changing the course of British history, according to research published in the journal Nature today.

The study, led by Sanjeev Gupta and Jenny Collier from Imperial College London, has revealed spectacular images of a huge valley tens of kilometres wide and up to 50 metres deep carved into chalk bedrock on the floor of the English Channel.

Using high-resolution sonar waves the team captured images of a perfectly preserved submerged world in the channel basin. The maps highlight deep scour marks and landforms which were created by torrents of water rushing over the exposed channel basin.

To the north of the channel basin was a lake which formed in the area now known as the southern North Sea. It was fed by the Rhine and Thames, impounded to the north by glaciers and dammed to the south by the Weald-Artois chalk ridge which spanned the Dover Straits.

It is believed that a rise in the lake level eventually led to a breach in the Weald-Artois ridge, carving a massive valley along the English Channel, which was exposed during a glacial period.

At its peak, it is believed that the megaflood could have lasted several months, discharging an estimated one million cubic metres of water per second. This flow was one of the largest recorded megafloods in history and could have occurred 450,000 to 200,000 years ago.

The researchers believe the breach of the ridge, and subsequent flooding, reorganised the river drainages in north-west Europe by re-routing the combined Rhine-Thames River through the English Channel to form the Channel River.

The breach and permanent separation of the UK also affected patterns of early human occupation in Britain. Researchers speculate that the flooding induced changes in topography creating barriers to migration which led to a complete absence of humans in Britain 100,000 years ago.

Dr Sanjeev Gupta, from the Department of Earth Science & Engineering at Imperial said: “This prehistoric event rewrites the history of how the UK became an island and may explain why early human occupation of Britain came to an abrupt halt for almost 120 thousand years.”

Project collaborator, Dr Jenny Collier, also from the Department of Earth Science & Engineering, speculates on the potential for future discoveries on the continental shelves.

“The preservation of the landscape on the floor of the English Channel, which is now 30-50 m below sea-level, is far better than anyone would have expected. It opens the way to discover a host of processes that shaped the development of north-west Europe during the past million years or so,” said Dr Collier.

The Imperial research team collaborated with the UK Hydrographic Office and the Maritime Coastguard Agency (MCA) on the project. Data collected by the MCA and archived by the Hydrographic Office was originally sourced for civil safety at sea.

Colin Smith | alfa
Further information:
http://www.imperial.ac.uk

More articles from Earth Sciences:

nachricht NASA looks to solar eclipse to help understand Earth's energy system
21.07.2017 | NASA/Goddard Space Flight Center

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>