Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catastrophic flooding changes the course of British history

19.07.2007
A catastrophic megaflood separated Britain from France hundreds of thousands of years ago, changing the course of British history, according to research published in the journal Nature today.

The study, led by Sanjeev Gupta and Jenny Collier from Imperial College London, has revealed spectacular images of a huge valley tens of kilometres wide and up to 50 metres deep carved into chalk bedrock on the floor of the English Channel.

Using high-resolution sonar waves the team captured images of a perfectly preserved submerged world in the channel basin. The maps highlight deep scour marks and landforms which were created by torrents of water rushing over the exposed channel basin.

To the north of the channel basin was a lake which formed in the area now known as the southern North Sea. It was fed by the Rhine and Thames, impounded to the north by glaciers and dammed to the south by the Weald-Artois chalk ridge which spanned the Dover Straits.

It is believed that a rise in the lake level eventually led to a breach in the Weald-Artois ridge, carving a massive valley along the English Channel, which was exposed during a glacial period.

At its peak, it is believed that the megaflood could have lasted several months, discharging an estimated one million cubic metres of water per second. This flow was one of the largest recorded megafloods in history and could have occurred 450,000 to 200,000 years ago.

The researchers believe the breach of the ridge, and subsequent flooding, reorganised the river drainages in north-west Europe by re-routing the combined Rhine-Thames River through the English Channel to form the Channel River.

The breach and permanent separation of the UK also affected patterns of early human occupation in Britain. Researchers speculate that the flooding induced changes in topography creating barriers to migration which led to a complete absence of humans in Britain 100,000 years ago.

Dr Sanjeev Gupta, from the Department of Earth Science & Engineering at Imperial said: “This prehistoric event rewrites the history of how the UK became an island and may explain why early human occupation of Britain came to an abrupt halt for almost 120 thousand years.”

Project collaborator, Dr Jenny Collier, also from the Department of Earth Science & Engineering, speculates on the potential for future discoveries on the continental shelves.

“The preservation of the landscape on the floor of the English Channel, which is now 30-50 m below sea-level, is far better than anyone would have expected. It opens the way to discover a host of processes that shaped the development of north-west Europe during the past million years or so,” said Dr Collier.

The Imperial research team collaborated with the UK Hydrographic Office and the Maritime Coastguard Agency (MCA) on the project. Data collected by the MCA and archived by the Hydrographic Office was originally sourced for civil safety at sea.

Colin Smith | alfa
Further information:
http://www.imperial.ac.uk

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>