Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geologists witness unique volcanic mudflow in action in New Zealand

16.07.2007
Crater Lake event may lead to development of hazards assessment tool

Volcanologist Sarah Fagents from the School of Ocean and Earth Science and Technology (SOEST) at the University of Hawaii at Manoa had an amazing opportunity to study volcanic hazards first hand, when a volcanic mudflow broke through the banks of a volcanic lake at Mount Ruapehu in New Zealand.

Fagents and colleagues were there on a National Science Foundation (NSF)-funded project to study the long-forecast Crater Lake break-out lahar at Mount Ruapehu. A lahar is a type of mudflow composed of water and other sediment that flows down from a volcano, typically along a river valley.

Lahars are caused by the rapid melting of snow and/or glaciers during a volcanic eruption, or as in the case of Mount Ruapehu, the breakout of a volcanic lake.

"Lahars can be extremely hazardous, especially in populated areas, because of their great speed and mass," said William Leeman, NSF program director for petrology and geochemistry. "They can flow for many tens of miles, causing catastrophic destruction along their path. The 1980 eruptions at Mount St. Helens, for example, resulted in spectacular lahar flows that choked virtually all drainages on the volcano, and impacted major rivers as far away as Portland, Ore."

Fagents visited stretches of the lahar pathway before the breakout to assess pre-event channel conditions. Although the event was predicted to occur in 2007, the recent decreased filling rate of Crater Lake suggested that the lake bank actually would not be overtopped until 2008.

However, several days of intense rainfall and increased seepage through the bank ultimately caused it to collapse much sooner, on March 18, 2007.

A lahar warning system had been installed at Mount Ruapehu, and was hailed a success after it successfully alerted officials to the onset of the lahar. In total, about 1.3 million cubic meters of water were released from Crater Lake.

"We found a broad area covered in a veneer of mud and boulders," said Fagents. "It was an unprecedented opportunity to see the immediate aftermath of such an event. It's particularly motivating for the students who were along to learn first-hand about lahar processes in such a dynamic environment."

Fagents and colleagues returned to New Zealand a month later to conduct a more detailed analysis of the deposit. "Because the Crater Lake breakout had been long forecast, there was an unprecedented amount of instrumentation installed in the catchment by our New Zealand colleagues to capture the event," says Fagents.

"The 2007 event is the best studied lahar in the world," she said.

Prediction of the effects of the events is of critical importance in populated volcanic regions. Many other volcanoes around the world, including Mount Rainier in Washington State, and Galunggung in Indonesia, are also considered particularly dangerous due to the risk of lahars, according to Leeman.

Fagents is developing a computer model to simulate lahar emplacement and to predict the associated hazards. "The intent is to adapt this model to account for different lahar triggering mechanisms, and for different locations, to make it widely applicable," said Fagents. "The ultimate goal is provide a useful hazards assessment tool for future lahars."

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov/mynsf/
http://www.nsf.gov

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>