Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fragmented Structure of Seafloor Faults May Dampen Effects of Earthquakes

16.07.2007
Studies of gravity fields suggest volcanism may smooth rough edges of tectonic plates

Many earthquakes in the deep ocean are much smaller in magnitude than expected. Geophysicists from the Woods Hole Oceanographic Institution (WHOI) have found new evidence that the fragmented structure of seafloor faults, along with previously unrecognized volcanic activity, may be dampening the effects of these quakes.

Examining data from 19 locations in the Atlantic, Pacific, and Indian oceans, researchers led by graduate student Patricia Gregg have found that “transform” faults are not developing or behaving as theories of plate tectonics say they should. Rather than stretching as long, continuous fault lines across the seafloor, the faults are often segmented and show signs of recent or ongoing volcanism. Both phenomena appear to prevent earthquakes from spreading across the seafloor, thus reducing their magnitude and impact.

Gregg, a doctoral candidate in the MIT/WHOI Joint Program in Oceanography and Oceanographic Engineering, conducted the study with seismologist Jian Lin and geophysicists Mark Behn and Laurent Montesi, all from the WHOI Department of Geology and Geophysics. Their findings were published in the July 12 issue of the journal Nature.

Oceanic transform faults cut across the mid-ocean ridge system, the 40,000-mile-long mountainous seam in Earth’s crust that marks the edges of the planet’s tectonic plates. Along some plate boundaries, such as the Mid-Atlantic Ridge, new crust is formed. In other regions, such as the western Pacific, old crust is driven back down into the Earth.

If you imagine the mid-ocean ridge as the seams on a baseball, then transform faults are the red stitches, lying mostly perpendicular to the ridge. These faults help accommodate the motion and geometry of Earth’s tectonic plates, cracking at the edges as the different pieces of rocky crust slip past each other.

The largest earthquakes at mid-ocean ridges tend to occur at transform faults. Yet while studying seafloor faults along the fast-spreading East Pacific Rise, Gregg and colleagues found that earthquakes were not as large in magnitude or resonating as much energy as they ought to, given the length of these faults.

The researchers decided to examine gravity data collected over three decades by ships and satellites, along with bathymetry maps of the seafloor. Conventional wisdom has held that transform faults should contain rocks that are colder, denser, and heavier than the new crust being formed at the mid-ocean ridge. Such colder and more brittle rocks should have a “positive gravity anomaly”; that is, the faults should exert a stronger gravitational pull than surrounding seafloor region. By contrast, the mid-ocean ridge should have a lesser gravity field, because the crust (which is lighter than underlying mantle rocks) is thicker along the ridge and the newer, molten rock is less dense.

But when Gregg examined gravity measurements from the East Pacific Rise and other fast-slipping transform faults, she was surprised to find that the faults were not exerting extra gravitational pull. On the contrary, many seemed to have lighter rock within and beneath the faults.

“A lot of the classic characteristics of transform faults didn’t make sense in light of what we were seeing,” said Gregg. “What we found was the complete opposite of the predictions.”

The researchers believe that many of the transform fault lines on the ocean floor are not as continuous as they first appear from low-resolution maps. Instead these fault lines are fragmented into smaller pieces. Such fragmented structure makes the length of any given earthquake rupture on the seafloor shorter—giving the earthquake less distance to travel along the surface.

It is also possible that magma, or molten rock, from inside the earth is rising up beneath the faults. Earthquakes stem from the buildup of friction between brittle rock in Earth’s plates and faults. Hot rock is more ductile and malleable, dampening the strains and jolts as the crust rubs together and serving as a sort of geological lubricant.

“What we learn about these faults and earthquakes underwater could help us understand land-based faults such as the San Andreas in California or the Great Rift in eastern Africa,” said Lin, a WHOI senior scientist and expert on seafloor earthquakes. “In areas where you have strike-slip faults, you might have smaller earthquakes when there is more magma and warmer, softer rock under the fault area.”

The findings by Gregg, Lin, and colleagues may also have implications for understanding the theory of plate tectonics, which says that new crust is only formed at mid-ocean ridges. By traditional definitions, no crust can be created or destroyed at a transform fault. The new study raises the possibility that new crust may be forming along these faults and fractures at fast-spreading ridges such as the East Pacific Rise.

“Our understanding of how transform faults behave must be reevaluated,” said Gregg. “There is a discrepancy that needs to be addressed.”

Funding for this research was provided by the NSF Graduate Research Fellowship Program, the WHOI Deep Ocean Exploration Institute, the NSF Ocean Sciences Directorate, and the Andrew W. Mellon Foundation Awards for Innovative Research.

The Woods Hole Oceanographic Institution is a private, independent organization in Falmouth, Mass., dedicated to marine research, engineering, and higher education. Established in 1930 on a recommendation from the National Academy of Sciences, its primary mission is to understand the oceans and their interaction with the Earth as a whole, and to communicate a basic understanding of the ocean's role in the changing global environment.

Media Relations | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Earth Sciences:

nachricht Novel method for investigating pore geometry in rocks
18.06.2018 | Kyushu University, I2CNER

nachricht Decades of satellite monitoring reveal Antarctic ice loss
14.06.2018 | University of Maryland

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>