Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Safer shipping by predicting sand wave behavior

16.07.2007
Dutch researcher Joris van den Berg has developed a mathematical model to predict the movement of sand waves. Sand waves are formed by an interaction between the tidal current and sand.

They are larger than sand ripples on the beach but smaller than sandbanks. Sand waves largely determine the shape of the sea floor in the southern part of the North Sea. A good predictive computer model would be a valuable tool for shipping and designers of offshore infrastructures.

The mathematical equations describing the behaviour of sand waves have been known for some time. Yet suitable equations alone are not enough to predict their behaviour; the equations also need to be solved reliably. To date, no practical methods were available for solving these equations, especially for larger sand waves.

Simple

First of all, Van den Berg simplified the equations considerably. This made it much easier to find solutions and hence to predict sand wave behaviour. The result was a tool that could quickly predict the effect of interventions such as dredging. This model was used successfully to determine the recovery of sand waves after dredging of a trench for the new high-voltage cable from the Netherlands to England. Subsequently, Van den Berg developed efficient calculation methods to solve the original equations. In the end this resulted in a mathematical model that will possibly enable studies on the interaction between sand waves and sand banks in the future.

Predicting the growth and movement of these waves is vitally important for the safety of shipping and the design of offshore infrastructure, such as pipelines, cables and platforms.

Sand patterns

Sand waves develop in loose sand on the bottom of shallow seas. This loose sand is transported by tidal currents, giving rise to wave patterns. These patterns disrupt the tidal flow and result in more sand being pushed on to the slope. Eventually, sand waves can reach a height of five to eight metres and due to the current they can continuously move and change shape.

Dr. Joris van den Berg | EurekAlert!
Further information:
http://www.nwo.nl

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>