Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Safer shipping by predicting sand wave behavior

16.07.2007
Dutch researcher Joris van den Berg has developed a mathematical model to predict the movement of sand waves. Sand waves are formed by an interaction between the tidal current and sand.

They are larger than sand ripples on the beach but smaller than sandbanks. Sand waves largely determine the shape of the sea floor in the southern part of the North Sea. A good predictive computer model would be a valuable tool for shipping and designers of offshore infrastructures.

The mathematical equations describing the behaviour of sand waves have been known for some time. Yet suitable equations alone are not enough to predict their behaviour; the equations also need to be solved reliably. To date, no practical methods were available for solving these equations, especially for larger sand waves.

Simple

First of all, Van den Berg simplified the equations considerably. This made it much easier to find solutions and hence to predict sand wave behaviour. The result was a tool that could quickly predict the effect of interventions such as dredging. This model was used successfully to determine the recovery of sand waves after dredging of a trench for the new high-voltage cable from the Netherlands to England. Subsequently, Van den Berg developed efficient calculation methods to solve the original equations. In the end this resulted in a mathematical model that will possibly enable studies on the interaction between sand waves and sand banks in the future.

Predicting the growth and movement of these waves is vitally important for the safety of shipping and the design of offshore infrastructure, such as pipelines, cables and platforms.

Sand patterns

Sand waves develop in loose sand on the bottom of shallow seas. This loose sand is transported by tidal currents, giving rise to wave patterns. These patterns disrupt the tidal flow and result in more sand being pushed on to the slope. Eventually, sand waves can reach a height of five to eight metres and due to the current they can continuously move and change shape.

Dr. Joris van den Berg | EurekAlert!
Further information:
http://www.nwo.nl

More articles from Earth Sciences:

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

nachricht World's first solar fuels reactor for night passes test
21.02.2018 | SolarPACES

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>