Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Safer shipping by predicting sand wave behavior

16.07.2007
Dutch researcher Joris van den Berg has developed a mathematical model to predict the movement of sand waves. Sand waves are formed by an interaction between the tidal current and sand.

They are larger than sand ripples on the beach but smaller than sandbanks. Sand waves largely determine the shape of the sea floor in the southern part of the North Sea. A good predictive computer model would be a valuable tool for shipping and designers of offshore infrastructures.

The mathematical equations describing the behaviour of sand waves have been known for some time. Yet suitable equations alone are not enough to predict their behaviour; the equations also need to be solved reliably. To date, no practical methods were available for solving these equations, especially for larger sand waves.

Simple

First of all, Van den Berg simplified the equations considerably. This made it much easier to find solutions and hence to predict sand wave behaviour. The result was a tool that could quickly predict the effect of interventions such as dredging. This model was used successfully to determine the recovery of sand waves after dredging of a trench for the new high-voltage cable from the Netherlands to England. Subsequently, Van den Berg developed efficient calculation methods to solve the original equations. In the end this resulted in a mathematical model that will possibly enable studies on the interaction between sand waves and sand banks in the future.

Predicting the growth and movement of these waves is vitally important for the safety of shipping and the design of offshore infrastructure, such as pipelines, cables and platforms.

Sand patterns

Sand waves develop in loose sand on the bottom of shallow seas. This loose sand is transported by tidal currents, giving rise to wave patterns. These patterns disrupt the tidal flow and result in more sand being pushed on to the slope. Eventually, sand waves can reach a height of five to eight metres and due to the current they can continuously move and change shape.

Dr. Joris van den Berg | EurekAlert!
Further information:
http://www.nwo.nl

More articles from Earth Sciences:

nachricht Sea ice extent sinks to record lows at both poles
23.03.2017 | NASA/Goddard Space Flight Center

nachricht Less radiation in inner Van Allen belt than previously believed
21.03.2017 | DOE/Los Alamos National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>