Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What Is Guilty Of Warming: Methane Or Carbonic Acid Gas?

10.07.2007
Back in the early 1990s, researchers found that the earth's surface temperature increased rather quickly by 5 to 9 degrees about 55 million years ago, and this warming lasted for about 100,000 years.

Some climatologists explain this warming by methane discharges into the atmosphere. This methane hypothesis was reviewed by the specialists of the Obukhov Insititue of Atmospheric Physics, Russian Academy of Sciences, under the guidance of Academician Georgy Golitsyn. According to the researchers’ opinion, quick (in terms of geology) methane-based warming is possible in principle, although it requires considerable methane streams from the interior of the Earth.

Within the long history of the Earth, its climate has changed a lot of times. The orbit parameters changed, continents and oceans shifted on the planet, big asteroids fell down on the Earth and volcanoes began to erupt. In the last decade of the 20th century, scientific community started to discuss one more possibility for climatic changes, which are long-term in terms of human history and quick in terms of geological time scale. This is the so-called “methane catastrophe” – discharge of large quantity of methane from gas hydrates located in the interior of the Earth. As a result, the climate got warmer within 15-30,000 years, which noticeably changed the late Palaeocene world. However, many researchers assume that the reason for global warming was quick increase of carbonic acid gas concentration in the atmosphere. So, what is to blame: carbonic acid gas or methane?

In 1750 during the pre-industrial epoch, the terrestrial atmosphere contained approximately 1,85 Gt of methane. To explain the warming that occurred 55 million years ago, the methane concentration would have increased by over a hundred times as compared to pre-industrial levels, and the carbonic acid gas concentration by only six times. As there was a sufficient quantity of methane in the interior of the Earth, estimated at between 700 and 30,000 Gt, it is possible that between 1,000 and 2,000 Gt was discharged from the interior of the Earth, of which 400 Gt fell on the Arctic permafrost zone.

Due to the molecular mass difference, carbonic dioxide formation requires 2,75 times more carbon than formation of the same quantity of methane, and as methane is a stronger greenhouse gas than carbonic dioxide, its potential would be 21 times higher than a similar potential of carbonic acid gas. If different absorbent properties of greenhouse gases are taken into account, then greenhouse warming due to methane concentration would have required six times less carbon than the warming due to carbonic acid gas, and, accordingly, much smaller discharge of carbon from the planet interior would have been sufficient.

There are other arguments in favor of the “methane” hypothesis. As the methane concentration in the atmosphere increases, its stability also grows. Thus, in the pre-industrial epoch, the methane molecule lifespan in the atmosphere was 8,4 years, in contemporary conditions - about 10 years, but 55 million years ago, during massive gas discharges, it could exceed 40 years. Besides, in case of high concentration of greenhouse gases in the atmosphere, the water vapour concentration also grows, which increases the greenhouse effect. To achieve the same increase of surface temperature (taking into account the water vapour influence), twice lower methane content in the atmosphere (and less discharge from gas hydrates) would have been sufficient. According to the Russian researchers’ estimates, during the warming period, the annual methane stream into the atmosphere should have been 25 Gt, if the methane molecule lived for 10 years, and 6 Gt, if its lifespan was increased up to 40 years. (In the contemporary world, the major methane leakage from the interior of the Earth occurs owing to natural gas production and makes about 600 Mt per year, and the atmosphere contains 4,6 Gt of methane).

The above estimates demonstrate that quick (in terms of geology) methane-based warming is possible in principle, although it requires considerable methane discharges. Probably, volley methane discharges in the geological past could be the trigger to launch the “quick” warming process. According to the recent palaeontological data, the methane concentration growth normally passes ahead of the temperature growth. Such mechanism explains why some warmings in the history of the Earth had happened earlier than the carbonic acid gas concentration increased.

Nevertheless, the Russian researchers point out that detailed review of the greenhouse phenomenon at the Palaeocene/Eocene border has not been finished yet. It requires further investigation with involvement of geological, geochemical and paleoenvironmental records and contemporary climatic theory models.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

More articles from Earth Sciences:

nachricht Seabed mining could destroy ecosystems
23.01.2018 | University of Exeter

nachricht How climate change weakens coral 'immune systems'
23.01.2018 | Ohio State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>