Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic Storms And Earthquakes

22.03.2002


For years scientists have been studying the impact of different geophysical fields on the earthquakes occurrence. It has been assumed that the fields, generated due to the solar activity, earth flows fluctuations, the Earth`s speed of rotation and even the launch of magnetohydrodynamic generators affect the strained state of the earth`s crust, these fields `pumping` additional energy into the crust. Normally the aroused earthquakes are recorded several days after the provoking key event.



Specialists from the Shmidt United Institute for Physics of the Earth, Russian Academy of Sciences, assume that magnetic storms are also powerful enough to quake the earth`s crust. To verify the hypothesis, the researchers compared more than 14,000 earth`s crust vibrations of sufficient power recorded since 1975 in Kazakhstan and Kirgizia, and approximately 350 sudden magnetic storms recorded within the same period by the world geomagnetic observations network.

Geomagnetic storms usually arise due to the high-speed plasma streams ejection on the Sun which accompany the solar flares activity. The air-blast produced by the high-speed plasma streams ejection hits the Earth magnetosphere causing the vibrations. The beginning of the storm which lasts from several hours to several days can be sensed almost simultaneously all over the Earth. Then the storm is replaced by a longer recovery stage, when the Earth magnetic field is gradually restored. At this stage the magnetic field characteristics vary considerably in different latitudes.


The calculations have proved that the greatest number of earthquakes in Kazakhstan and Kirghizia occurs within a several-day period after the beginning of the magnetic storm. Normally the number of earthquakes increases noticeably after a magnetic storm takes place. Nevertheless, in some areas the opposite regularity has been observed. In order to account for other factors (possibly of no less importance), the scientists have tried to trace a connection between the above earthquakes and the tidal fluctuations. However, according to the statistical analysis the tidal fluctuations, unlike geomagnetic storms, have no impact on the earthquakes.

The scientists have also tried to estimate whether the magnetic storm energy is sufficient to provoke an earthquake. In general, the seismic activity releases the energy amount comparable with that carried over by the magnetic storm. However, an earth shock consumes only the hundredth part of the involved resilient energy which triggers the process. Besides, the electromagnetic energy of the storm is being converted into mechanical one through complicated effects in the rocks, for instance piezoelectric effect. The efficiency factor of this conversion makes as little as the hundredth parts of a percent. Therefore, the scientists tend to believe that the magnetic storm acts as the earthquake trigger. The geophysics hope to understand better the physical nature of the trigger effect in the course of the future fieldwork and laboratory experiments.

Tatiana Pitchugina | alphagalileo

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>