Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magnetic Storms And Earthquakes

22.03.2002


For years scientists have been studying the impact of different geophysical fields on the earthquakes occurrence. It has been assumed that the fields, generated due to the solar activity, earth flows fluctuations, the Earth`s speed of rotation and even the launch of magnetohydrodynamic generators affect the strained state of the earth`s crust, these fields `pumping` additional energy into the crust. Normally the aroused earthquakes are recorded several days after the provoking key event.



Specialists from the Shmidt United Institute for Physics of the Earth, Russian Academy of Sciences, assume that magnetic storms are also powerful enough to quake the earth`s crust. To verify the hypothesis, the researchers compared more than 14,000 earth`s crust vibrations of sufficient power recorded since 1975 in Kazakhstan and Kirgizia, and approximately 350 sudden magnetic storms recorded within the same period by the world geomagnetic observations network.

Geomagnetic storms usually arise due to the high-speed plasma streams ejection on the Sun which accompany the solar flares activity. The air-blast produced by the high-speed plasma streams ejection hits the Earth magnetosphere causing the vibrations. The beginning of the storm which lasts from several hours to several days can be sensed almost simultaneously all over the Earth. Then the storm is replaced by a longer recovery stage, when the Earth magnetic field is gradually restored. At this stage the magnetic field characteristics vary considerably in different latitudes.


The calculations have proved that the greatest number of earthquakes in Kazakhstan and Kirghizia occurs within a several-day period after the beginning of the magnetic storm. Normally the number of earthquakes increases noticeably after a magnetic storm takes place. Nevertheless, in some areas the opposite regularity has been observed. In order to account for other factors (possibly of no less importance), the scientists have tried to trace a connection between the above earthquakes and the tidal fluctuations. However, according to the statistical analysis the tidal fluctuations, unlike geomagnetic storms, have no impact on the earthquakes.

The scientists have also tried to estimate whether the magnetic storm energy is sufficient to provoke an earthquake. In general, the seismic activity releases the energy amount comparable with that carried over by the magnetic storm. However, an earth shock consumes only the hundredth part of the involved resilient energy which triggers the process. Besides, the electromagnetic energy of the storm is being converted into mechanical one through complicated effects in the rocks, for instance piezoelectric effect. The efficiency factor of this conversion makes as little as the hundredth parts of a percent. Therefore, the scientists tend to believe that the magnetic storm acts as the earthquake trigger. The geophysics hope to understand better the physical nature of the trigger effect in the course of the future fieldwork and laboratory experiments.

Tatiana Pitchugina | alphagalileo

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

Guardians of the Gate

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>