Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA satellite captures first view of 'night-shining' clouds

02.07.2007
A NASA satellite has captured the first occurrence this summer of mysterious iridescent polar clouds that form 50 miles above Earth's surface.

The first observations of these clouds by the Aeronomy of Ice in the Mesosphere (AIM) satellite occurred above 70 degrees north on May 25. Observers on the ground began seeing the clouds on June 6 over northern Europe. AIM is the first satellite mission dedicated to the study of these unusual clouds.

These mystifying clouds are called Polar Mesospheric Clouds, or PMCs, when they are viewed from space and referred to as "night-shining" clouds, or noctilucent clouds, when viewed by observers on Earth. The clouds form during the Northern Hemisphere's summer season that begins in mid-May and extends through the end of August. They are being seen by AIM's instruments more frequently as the season progresses. The clouds also are seen in the high latitudes of the Southern Hemisphere during the summer months.

Very little is known about how these clouds form over the poles, why they are being seen more frequently and at lower latitudes than ever before, or why they have been growing brighter. AIM will observe two complete polar mesospheric cloud seasons over both poles, documenting for the first time the entire, complex life cycle of PMCs.

"It is clear that PMCs are changing, a sign that a distant and rarified part of our atmosphere is being altered, and we do not understand how, why or what it means," stated AIM principal investigator James Russell III, Hampton University, Hampton, Va. "These observations suggest a connection with global change in the lower atmosphere and could represent an early warning that our Earth's environment is being altered."

The AIM instruments are returning valuable information on the global extent and variability of these clouds and preliminary information on their particle sizes and shapes. Early indications are that the clouds occur at high latitudes early in the season then move to lower latitudes as time progresses. The AIM science team is studying these new data to understand whether the changes in the clouds may be related to global climate change.

When the Northern Hemisphere summer season ends in mid- to late August, the AIM science team will not have to wait long before the Southern Hemisphere's season starts. This occurs about three months later in mid- to late November. The Southern season lasts until approximately mid-March of 2008. Early results from the AIM mission will be reported at a major international conference focused on PMCs and other high altitude layered phenomena to be held at the end of August 2007 in Fairbanks, Alaska.

The satellite was launched on April 25, only four weeks before the first science observations began. During the satellite-commissioning phase and now in routine observations, all three state-of-the-art instruments have been working exceptionally well and returning high quality data.

The Cloud Imaging and Particle Size instrument offers a 2-D look at the clouds, collecting multiple views from different angles. The cameras are providing panoramic PMC images of the Arctic polar cap daily. The Solar Occultation For Ice Experiment is measuring new information on cloud particles: their variability with altitude, the chemicals within the clouds and the environment in which the clouds form. The Cosmic Dust Experiment is recording the amount of space dust that enters Earth's atmosphere to help scientists assess the role this dust plays in PMC formation.

The AIM mission coincides with the two-year, worldwide scientific community's International Polar Year, and the mission is expected to make unique contributions to the International Polar Year's objective of advancing polar research.

AIM is the ninth Small Explorers mission under NASA's Explorer Program and is managed by the Explorers Program Office at the Goddard Space Flight Center, Greenbelt, Md. The AIM Project Data Center is located at Hampton University.

Tabatha Thompson | EurekAlert!
Further information:
http://www.nasa.gov/home/hqnews/2007/jun/HQ_07145_AIM_First_Light.html

More articles from Earth Sciences:

nachricht Multi-year submarine-canyon study challenges textbook theories about turbidity currents
12.12.2017 | Monterey Bay Aquarium Research Institute

nachricht How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas
11.12.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>