Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA satellite captures first view of 'night-shining' clouds

02.07.2007
A NASA satellite has captured the first occurrence this summer of mysterious iridescent polar clouds that form 50 miles above Earth's surface.

The first observations of these clouds by the Aeronomy of Ice in the Mesosphere (AIM) satellite occurred above 70 degrees north on May 25. Observers on the ground began seeing the clouds on June 6 over northern Europe. AIM is the first satellite mission dedicated to the study of these unusual clouds.

These mystifying clouds are called Polar Mesospheric Clouds, or PMCs, when they are viewed from space and referred to as "night-shining" clouds, or noctilucent clouds, when viewed by observers on Earth. The clouds form during the Northern Hemisphere's summer season that begins in mid-May and extends through the end of August. They are being seen by AIM's instruments more frequently as the season progresses. The clouds also are seen in the high latitudes of the Southern Hemisphere during the summer months.

Very little is known about how these clouds form over the poles, why they are being seen more frequently and at lower latitudes than ever before, or why they have been growing brighter. AIM will observe two complete polar mesospheric cloud seasons over both poles, documenting for the first time the entire, complex life cycle of PMCs.

"It is clear that PMCs are changing, a sign that a distant and rarified part of our atmosphere is being altered, and we do not understand how, why or what it means," stated AIM principal investigator James Russell III, Hampton University, Hampton, Va. "These observations suggest a connection with global change in the lower atmosphere and could represent an early warning that our Earth's environment is being altered."

The AIM instruments are returning valuable information on the global extent and variability of these clouds and preliminary information on their particle sizes and shapes. Early indications are that the clouds occur at high latitudes early in the season then move to lower latitudes as time progresses. The AIM science team is studying these new data to understand whether the changes in the clouds may be related to global climate change.

When the Northern Hemisphere summer season ends in mid- to late August, the AIM science team will not have to wait long before the Southern Hemisphere's season starts. This occurs about three months later in mid- to late November. The Southern season lasts until approximately mid-March of 2008. Early results from the AIM mission will be reported at a major international conference focused on PMCs and other high altitude layered phenomena to be held at the end of August 2007 in Fairbanks, Alaska.

The satellite was launched on April 25, only four weeks before the first science observations began. During the satellite-commissioning phase and now in routine observations, all three state-of-the-art instruments have been working exceptionally well and returning high quality data.

The Cloud Imaging and Particle Size instrument offers a 2-D look at the clouds, collecting multiple views from different angles. The cameras are providing panoramic PMC images of the Arctic polar cap daily. The Solar Occultation For Ice Experiment is measuring new information on cloud particles: their variability with altitude, the chemicals within the clouds and the environment in which the clouds form. The Cosmic Dust Experiment is recording the amount of space dust that enters Earth's atmosphere to help scientists assess the role this dust plays in PMC formation.

The AIM mission coincides with the two-year, worldwide scientific community's International Polar Year, and the mission is expected to make unique contributions to the International Polar Year's objective of advancing polar research.

AIM is the ninth Small Explorers mission under NASA's Explorer Program and is managed by the Explorers Program Office at the Goddard Space Flight Center, Greenbelt, Md. The AIM Project Data Center is located at Hampton University.

Tabatha Thompson | EurekAlert!
Further information:
http://www.nasa.gov/home/hqnews/2007/jun/HQ_07145_AIM_First_Light.html

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>