Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Making waves: how UCL research could minimise the impact of future tsunami

For the first time, a team of experts is preparing to create tsunami in a controlled environment in order to study their effects on buildings and coastlines - ultimately paving the way for the design of new structures better able to withstand their impact. Ahead of today’s (Monday 2nd) Coastal Structures 2007 International Conference Dr Tiziana Rossetto, UCL Department of Civil & Environmental Engineering, unveiled plans to develop an innovative new tsunami generator capable of creating scaled-down versions of the devastating waves. The UCL team will be working with marine engineering specialists HR Wallingford (HRW) throughout the project.

“Tsunami are water waves generated by earthquakes, underwater landslides, volcanic eruptions or major debris slides,” said Dr Rossetto. “The waves travel across oceans with small vertical displacements and in open water you could easily bob over one without noticing. It’s when the waves approach the coastline, hit shallower water, slow down, and grow taller that you get the huge wall of water that people visualise when you mention a tsunami.

“The main gap in our knowledge is about what happens when the tsunami wave approaches the nearshore region and then runs inland. These flow processes cannot be simplified using mathematical models because of the complex interaction that takes place with beaches, sediment, coastal defences and then in and around buildings.

“It is possible for the whole process to be simulated with hydraulic models, but to get meaningful data the tsunami wave has to be accurately generated in the first place. Conventional wave generators haven’t been able to replicate tsunami because of the unusually long wavelength that is required.”

Professor William Allsop of HRW said: “Our new machine will control the flow of a large mass of water by using air suction within an inverted tank. We have used this technology over many years to make model tides in large scale models and our collaboration with UCL means we will be able to produce a unique research facility.”

The new tsunami generator will be able to create multiple waves, replicating the three or four peaks experienced during the Boxing Day tsunami that hit the Indian Ocean in 2004. The tsunami will pass down a 45m long flume at realistic wavelengths, mimicking the characteristics of waves which have passed from deep water (approx. 200m) into shallow water (20m – 50m) as they approach the coast. The wave flume will be equipped to measure coastal processes, inundation and wave forces as the tsunami travels up a shelving seabed, breeches the coastline and flows inland.

After the initial series of experiments, a team of researchers from UCL and HRW will go on to examine the effects of retreating and repeated waves on seawalls and beaches. The tests will measure the force exerted by the waves on representative buildings and quantify the wave’s ability to erode the coast, potentially destabilising structures completely.

The tsunami experiments will take place at HR Wallingford’s laboratories in Oxfordshire and construction of the generator is scheduled for completion in the summer of 2008. UCL and HRW plan to make the facility available to international teams of researchers in autumn 2009.

David Weston | alfa
Further information:

More articles from Earth Sciences:

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

nachricht Enormous dome in central Andes driven by huge magma body beneath it
25.10.2016 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>