Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA airborne expedition chases climate, ozone questions

28.06.2007
NASA's Tropical Composition, Cloud and Climate Coupling (TC4) field campaign will begin this summer in San Jose, Costa Rica, with an investigation into how chemical compounds in the air are transported vertically into the stratosphere and how that transport affects cloud formation and climate.

The study will begin the week of July 16 with coordinated observations from satellites, high-flying NASA research aircraft, balloons and ground-based radar. The targets of these measurements are the gases, aerosols and ice crystals that flow from the top of the strong storm systems that form over the warm tropical ocean. These storm systems pump air more than 40,000 feet above Earth’s surface, where it can influence the composition of the stratosphere, home of our planet’s protective ozone layer.

The outflow of these storms also produces vast swaths of icy cirrus clouds that play an important role in how much infrared energy is trapped in Earth's atmosphere. Scientists want to document the full life cycle of these widespread clouds -- down to the size and shape of their tiny ice crystals -- to better understand how Earth will react to a warming climate.

"This campaign is an unprecedented opportunity to use NASA's complete suite of satellite and airborne Earth-observing capabilities to investigate a largely unexplored region of the atmosphere," said Michael J. Kurylo, a TC4 program scientist at NASA Headquarters, Washington. "This tropical transitional layer of the atmosphere between the troposphere and the stratosphere plays a key role in both climate change science and atmospheric ozone chemistry. The data will yield new insights into the composition of this layer and the impact of the deep clouds that penetrate the atmosphere up into this layer."

The effort runs through Aug. 8. It is NASA's largest Earth science field campaign of the year.

"A mission this complex, with three aircraft, deployment sites in Costa Rica and Panama, and more than 400 people involved, can be a real challenge," said Mission Project Manager Marilyn Vasques of NASA Ames Research Center, Moffett Field, Calif.

Soaring high above the cloud systems will be a NASA ER-2 aircraft, which can reach an altitude of 70,000 feet, or 3 miles into the stratosphere. A NASA WB-57 aircraft will fly into the cirrus clouds and sample the chemical make-up of the storm systems’ outflow. NASA's DC-8 aircraft will probe the region between the troposphere and the stratosphere (known as the tropopause transitional layer) with remote-sensing instruments. It also will sample cloud particles and air chemistry at lower altitudes. A weather radar and meteorological balloons will be deployed in Panama to support the campaign. Additional balloons will be launched from Costa Rica and San Cristobal Island in the Galapagos Archipelago.

Observations from seven satellites will complement the aircraft measurements with large-scale views of many different features of the atmosphere. For example, the Aura spacecraft will focus on the chemical composition of the tropopause transitional layer and measure ozone, water vapor, carbon monoxide and particles. NASA's Aqua satellite will map thin cirrus clouds, some of which are so faint they are nearly invisible to the naked eye. Instruments on the CALIPSO and CloudSat satellites will pierce the atmosphere to provide vertical profiles of clouds and aerosol particles that can change how clouds form.

Along the coasts of Colombia and Panama south of Costa Rica, the warm summer waters of the Pacific Ocean are a fertile breeding ground for the type of heat-driven, or convective, storm systems the mission is targeting. Clouds produced by these maritime systems produce heavy rainfall and cloud tops that can reach into the transitional layer.

Mission scientists want to know what effect a warming climate with rising ocean temperatures will have on the intensity of these storm systems. Another unknown is how aerosol particles swept up in these systems change the clouds and are, in turn, affected by the clouds.

These tropical convective systems also may play a role in the recovery of the ozone layer. Estimates of ozone destruction in the stratosphere typically minimize the impact of short-lived chemical compounds that presumably could not survive the long journey there. Mission scientists will investigate whether the rapid movement of air in these strong convective systems provides an express route for ozone-destroying compounds to reach the stratosphere.

Tabatha Thompson | EurekAlert!
Further information:
http://www.nasa.gov/home/hqnews/2007/jun/HQ_07144_TC4_Mission.html

More articles from Earth Sciences:

nachricht A new dead zone in the Indian Ocean could impact future marine nutrient balance
06.12.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>