Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Several Tonnes Of Uranium And A Town Called Colonie

27.06.2007
Investigating the fate of depleted uranium particulate in the environment

Recent research by the Department of Geology at University of Leicester, and at the British Geological Survey aims to improve understanding of how depleted uranium particulate behaves in the environment. PhD research student Nicholas Lloyd has identified uranium oxide particulate that has survived more than 25 years in the environment, and depleted uranium contamination nearly 6 km from point of release.

The use of depleted uranium (DU) munitions by US and British forces has been highly controversial; on impact with armoured targets they shed uranium particulate that can be inhaled into the lungs. DU is both weakly radioactive and chemically toxic. Concerns raised by campaign groups have been the subject of numerous newspaper headlines, and it is frequently cited as a possible cause of Gulf War syndrome.

However, under the scrutiny of peer-review, scientific studies have so far failed to demonstrate a significant connection between inhalation exposure and human ill-health. One of the problems is that no studied non-occupational populations have been shown to have significant inhalation exposure to DU.

During the 1960s and ‘70s an estimated 5 tonnes of uranium was emitted into the environment, in a residential area of Colonie, NY, USA. Local residents are concerned that they were exposed to airborne particulate, and have campaigned for a health study. The current research could provide valuable baseline data for such a study.

The researchers led by Professor Randall Parrish collected hundreds of soil and dust samples last July, with the help of local residents and Dr John Arnason of SUNY at Albany. Soils and dusts have been examined using scanning electron microscopy, and reveal micrometer diameter uranium-rich particulate (invisible to the naked eye). These particles may be resuspended and inhaled. The samples have also been analysed by mass spectrometry, revealing contamination several hundreds of times greater than background near source, and trace contamination 35 cm below surface and as far afield as 5.8 km.

Nicholas said that the study by University of Leicester and the British Geological Survey aims to improve understanding of how depleted uranium particulate behaves in the environment. The study shows that uranium oxide particulate is both mobile and durable in the environment.

The research is being presented to the public at the University of Leicester on June 29. The Festival of Postgraduate Research introduces employers and the public to the next generation of innovators and cutting-edge researchers, and gives postgraduate researchers the opportunity to explain the real world implications of their research to a wide ranging audience.

More information on the Festival of Postgraduate Research at: www.le.ac.uk/gradschool/festival

Ather Mirza | University of Leicester
Further information:
http://www.le.ac.uk/gradschool/festival

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>