Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Several Tonnes Of Uranium And A Town Called Colonie

27.06.2007
Investigating the fate of depleted uranium particulate in the environment

Recent research by the Department of Geology at University of Leicester, and at the British Geological Survey aims to improve understanding of how depleted uranium particulate behaves in the environment. PhD research student Nicholas Lloyd has identified uranium oxide particulate that has survived more than 25 years in the environment, and depleted uranium contamination nearly 6 km from point of release.

The use of depleted uranium (DU) munitions by US and British forces has been highly controversial; on impact with armoured targets they shed uranium particulate that can be inhaled into the lungs. DU is both weakly radioactive and chemically toxic. Concerns raised by campaign groups have been the subject of numerous newspaper headlines, and it is frequently cited as a possible cause of Gulf War syndrome.

However, under the scrutiny of peer-review, scientific studies have so far failed to demonstrate a significant connection between inhalation exposure and human ill-health. One of the problems is that no studied non-occupational populations have been shown to have significant inhalation exposure to DU.

During the 1960s and ‘70s an estimated 5 tonnes of uranium was emitted into the environment, in a residential area of Colonie, NY, USA. Local residents are concerned that they were exposed to airborne particulate, and have campaigned for a health study. The current research could provide valuable baseline data for such a study.

The researchers led by Professor Randall Parrish collected hundreds of soil and dust samples last July, with the help of local residents and Dr John Arnason of SUNY at Albany. Soils and dusts have been examined using scanning electron microscopy, and reveal micrometer diameter uranium-rich particulate (invisible to the naked eye). These particles may be resuspended and inhaled. The samples have also been analysed by mass spectrometry, revealing contamination several hundreds of times greater than background near source, and trace contamination 35 cm below surface and as far afield as 5.8 km.

Nicholas said that the study by University of Leicester and the British Geological Survey aims to improve understanding of how depleted uranium particulate behaves in the environment. The study shows that uranium oxide particulate is both mobile and durable in the environment.

The research is being presented to the public at the University of Leicester on June 29. The Festival of Postgraduate Research introduces employers and the public to the next generation of innovators and cutting-edge researchers, and gives postgraduate researchers the opportunity to explain the real world implications of their research to a wide ranging audience.

More information on the Festival of Postgraduate Research at: www.le.ac.uk/gradschool/festival

Ather Mirza | University of Leicester
Further information:
http://www.le.ac.uk/gradschool/festival

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>