Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New picture of Earth's lower mantle emerges from laboratory studies

25.06.2007
Laboratory measurements of a high-pressure mineral believed to exist deep within the Earth show that the mineral may not, as geophysicists hoped, have the right properties to explain a mysterious layer lying just above the planet’s core.

A team of scientists, led by Sébastien Merkel, of the University of California, Berkeley, made the first laboratory study of the deformation properties of a high-pressure silicate mineral named post-perovskite. The work appears in the June 22 issue of the scientific journal Science.

The team included Allen McNamara of Arizona State University's School of Earth and Space Exploration, part of the College of Liberal Arts and Sciences. McNamara, a geophysicist, modeled the stresses the mineral would typically undergo as convection currents deep in Earth's mantle cause it to rise and sink. Also on the team were Atsushi Kubo and Thomas S. Duffy, Princeton University; Sergio Speziale, Lowell Miyagi and Hans-Rudolf Wenk, University of California, Berkeley; and Yue Meng, HPCAT, Carnegie Institution of Washington, Argonne, Ill.

"This the first time the deformation properties of this mineral have been studied at lower mantle temperatures and pressures," says McNamara. "The goal was to observe where the weak planes are in its crystal structure and how they are oriented." The results of the combined laboratory tests and computer models, he says, show that post-perovskite doesn't fit what is known about conditions in the lowermost mantle.

Earth's mantle is a layer that extends from the bottom of the crust, about 25 miles down, to the planet's core, 1,800 miles deep. Scientists divide the mantle into two layers separated by a wide transition zone centered around a depth of about 300 miles. The lower mantle lies below that zone.

Most of Earth's lower mantle is made of a magnesium silicate mineral called perovskite. In 2004, earth scientists discovered that under the conditions of the lower mantle, perovskite can change into a high-pressure form, which they dubbed post-perovskite. Since its discovery, post-perovskite has been geophysicists' favorite candidate to explain the composition of a mysterious layer that forms the bottom of Earth's lower mantle.

Known to earth scientists as D" (dee-double-prime), this layer averages 120 miles thick and lies directly above Earth's core. D" was named in 1949 by seismologist Keith Bullen, who found the layer from the way earthquake waves travel through the planet's interior. But the nature of D" has eluded scientists since Bullen's discovery.

"Our team found," says McNamara, "that while post-perovskite has some properties that fit what's known about D", our laboratory measurements and computer models show that post-perovskite doesn't fit one particular essential property." That property is seismic anisotropy, he says, referring to the fact that earthquake waves passing through D" become distorted in a characteristic way.

McNamara explains, "Down in the D" layer, the horizontal part of earthquake waves travel faster than the vertical parts. But in our laboratory measurements and models, post-perovskite produces an opposite effect on the waves."

He adds, "This appears to be a basic contradiction."

McNamara notes that the laboratory measurements, made by team members at Princeton University, were extremely difficult. They involved crushing tiny samples of perovskite on a diamond anvil until they changed into post-perovskite. Then the scientists shot X-rays through the samples to identify the mineral crystals' internal structure.

This information was used by other team members at the University of California, Berkeley, to model how these crystals would deform as the mantle flows. The deformation results let the scientists predict how the crystals would affect seismic waves passing through them.

McNamara's work modeled the slow churn of the mantle, in which convection currents in the rock rise and fall about as fast as fingernails grow, roughly an inch a year. He calculated stresses, pressures and temperatures to draw a detailed picture of where post-perovskite would be found. This let him profile the structure of the D" layer.

"All these computations have been in two dimensions," he says. "Our next step is to go to 3-D modeling."

Does their work rule out post-perovskite to explain the D" layer? "Not completely," says McNamara. "We've begun to study this newly found mineral in the laboratory, but the work isn't yet over."

He adds, "It's possible that post-perovskite does exist in the lowermost mantle, and another mineral is causing the seismic anisotropy we see there."

Robert Burnham, robert.burnham@asu.edu

(480) 458-8207

Carol Hughes, carol.hughes@asu.edu

(480) 965-6375

Robert Burnham | EurekAlert!
Further information:
http://www.asu.edu

More articles from Earth Sciences:

nachricht World’s oldest known oxygen oasis discovered
18.01.2018 | Eberhard Karls Universität Tübingen

nachricht A close-up look at an uncommon underwater eruption
11.01.2018 | Woods Hole Oceanographic Institution

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>