Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New picture of Earth's lower mantle emerges from laboratory studies

25.06.2007
Laboratory measurements of a high-pressure mineral believed to exist deep within the Earth show that the mineral may not, as geophysicists hoped, have the right properties to explain a mysterious layer lying just above the planet’s core.

A team of scientists, led by Sébastien Merkel, of the University of California, Berkeley, made the first laboratory study of the deformation properties of a high-pressure silicate mineral named post-perovskite. The work appears in the June 22 issue of the scientific journal Science.

The team included Allen McNamara of Arizona State University's School of Earth and Space Exploration, part of the College of Liberal Arts and Sciences. McNamara, a geophysicist, modeled the stresses the mineral would typically undergo as convection currents deep in Earth's mantle cause it to rise and sink. Also on the team were Atsushi Kubo and Thomas S. Duffy, Princeton University; Sergio Speziale, Lowell Miyagi and Hans-Rudolf Wenk, University of California, Berkeley; and Yue Meng, HPCAT, Carnegie Institution of Washington, Argonne, Ill.

"This the first time the deformation properties of this mineral have been studied at lower mantle temperatures and pressures," says McNamara. "The goal was to observe where the weak planes are in its crystal structure and how they are oriented." The results of the combined laboratory tests and computer models, he says, show that post-perovskite doesn't fit what is known about conditions in the lowermost mantle.

Earth's mantle is a layer that extends from the bottom of the crust, about 25 miles down, to the planet's core, 1,800 miles deep. Scientists divide the mantle into two layers separated by a wide transition zone centered around a depth of about 300 miles. The lower mantle lies below that zone.

Most of Earth's lower mantle is made of a magnesium silicate mineral called perovskite. In 2004, earth scientists discovered that under the conditions of the lower mantle, perovskite can change into a high-pressure form, which they dubbed post-perovskite. Since its discovery, post-perovskite has been geophysicists' favorite candidate to explain the composition of a mysterious layer that forms the bottom of Earth's lower mantle.

Known to earth scientists as D" (dee-double-prime), this layer averages 120 miles thick and lies directly above Earth's core. D" was named in 1949 by seismologist Keith Bullen, who found the layer from the way earthquake waves travel through the planet's interior. But the nature of D" has eluded scientists since Bullen's discovery.

"Our team found," says McNamara, "that while post-perovskite has some properties that fit what's known about D", our laboratory measurements and computer models show that post-perovskite doesn't fit one particular essential property." That property is seismic anisotropy, he says, referring to the fact that earthquake waves passing through D" become distorted in a characteristic way.

McNamara explains, "Down in the D" layer, the horizontal part of earthquake waves travel faster than the vertical parts. But in our laboratory measurements and models, post-perovskite produces an opposite effect on the waves."

He adds, "This appears to be a basic contradiction."

McNamara notes that the laboratory measurements, made by team members at Princeton University, were extremely difficult. They involved crushing tiny samples of perovskite on a diamond anvil until they changed into post-perovskite. Then the scientists shot X-rays through the samples to identify the mineral crystals' internal structure.

This information was used by other team members at the University of California, Berkeley, to model how these crystals would deform as the mantle flows. The deformation results let the scientists predict how the crystals would affect seismic waves passing through them.

McNamara's work modeled the slow churn of the mantle, in which convection currents in the rock rise and fall about as fast as fingernails grow, roughly an inch a year. He calculated stresses, pressures and temperatures to draw a detailed picture of where post-perovskite would be found. This let him profile the structure of the D" layer.

"All these computations have been in two dimensions," he says. "Our next step is to go to 3-D modeling."

Does their work rule out post-perovskite to explain the D" layer? "Not completely," says McNamara. "We've begun to study this newly found mineral in the laboratory, but the work isn't yet over."

He adds, "It's possible that post-perovskite does exist in the lowermost mantle, and another mineral is causing the seismic anisotropy we see there."

Robert Burnham, robert.burnham@asu.edu

(480) 458-8207

Carol Hughes, carol.hughes@asu.edu

(480) 965-6375

Robert Burnham | EurekAlert!
Further information:
http://www.asu.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>