Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New picture of Earth's lower mantle emerges from laboratory studies

25.06.2007
Laboratory measurements of a high-pressure mineral believed to exist deep within the Earth show that the mineral may not, as geophysicists hoped, have the right properties to explain a mysterious layer lying just above the planet’s core.

A team of scientists, led by Sébastien Merkel, of the University of California, Berkeley, made the first laboratory study of the deformation properties of a high-pressure silicate mineral named post-perovskite. The work appears in the June 22 issue of the scientific journal Science.

The team included Allen McNamara of Arizona State University's School of Earth and Space Exploration, part of the College of Liberal Arts and Sciences. McNamara, a geophysicist, modeled the stresses the mineral would typically undergo as convection currents deep in Earth's mantle cause it to rise and sink. Also on the team were Atsushi Kubo and Thomas S. Duffy, Princeton University; Sergio Speziale, Lowell Miyagi and Hans-Rudolf Wenk, University of California, Berkeley; and Yue Meng, HPCAT, Carnegie Institution of Washington, Argonne, Ill.

"This the first time the deformation properties of this mineral have been studied at lower mantle temperatures and pressures," says McNamara. "The goal was to observe where the weak planes are in its crystal structure and how they are oriented." The results of the combined laboratory tests and computer models, he says, show that post-perovskite doesn't fit what is known about conditions in the lowermost mantle.

Earth's mantle is a layer that extends from the bottom of the crust, about 25 miles down, to the planet's core, 1,800 miles deep. Scientists divide the mantle into two layers separated by a wide transition zone centered around a depth of about 300 miles. The lower mantle lies below that zone.

Most of Earth's lower mantle is made of a magnesium silicate mineral called perovskite. In 2004, earth scientists discovered that under the conditions of the lower mantle, perovskite can change into a high-pressure form, which they dubbed post-perovskite. Since its discovery, post-perovskite has been geophysicists' favorite candidate to explain the composition of a mysterious layer that forms the bottom of Earth's lower mantle.

Known to earth scientists as D" (dee-double-prime), this layer averages 120 miles thick and lies directly above Earth's core. D" was named in 1949 by seismologist Keith Bullen, who found the layer from the way earthquake waves travel through the planet's interior. But the nature of D" has eluded scientists since Bullen's discovery.

"Our team found," says McNamara, "that while post-perovskite has some properties that fit what's known about D", our laboratory measurements and computer models show that post-perovskite doesn't fit one particular essential property." That property is seismic anisotropy, he says, referring to the fact that earthquake waves passing through D" become distorted in a characteristic way.

McNamara explains, "Down in the D" layer, the horizontal part of earthquake waves travel faster than the vertical parts. But in our laboratory measurements and models, post-perovskite produces an opposite effect on the waves."

He adds, "This appears to be a basic contradiction."

McNamara notes that the laboratory measurements, made by team members at Princeton University, were extremely difficult. They involved crushing tiny samples of perovskite on a diamond anvil until they changed into post-perovskite. Then the scientists shot X-rays through the samples to identify the mineral crystals' internal structure.

This information was used by other team members at the University of California, Berkeley, to model how these crystals would deform as the mantle flows. The deformation results let the scientists predict how the crystals would affect seismic waves passing through them.

McNamara's work modeled the slow churn of the mantle, in which convection currents in the rock rise and fall about as fast as fingernails grow, roughly an inch a year. He calculated stresses, pressures and temperatures to draw a detailed picture of where post-perovskite would be found. This let him profile the structure of the D" layer.

"All these computations have been in two dimensions," he says. "Our next step is to go to 3-D modeling."

Does their work rule out post-perovskite to explain the D" layer? "Not completely," says McNamara. "We've begun to study this newly found mineral in the laboratory, but the work isn't yet over."

He adds, "It's possible that post-perovskite does exist in the lowermost mantle, and another mineral is causing the seismic anisotropy we see there."

Robert Burnham, robert.burnham@asu.edu

(480) 458-8207

Carol Hughes, carol.hughes@asu.edu

(480) 965-6375

Robert Burnham | EurekAlert!
Further information:
http://www.asu.edu

More articles from Earth Sciences:

nachricht Hurricane Harvey: Dutch-Texan research shows most fatalities occurred outside flood zones
19.04.2018 | European Geosciences Union

nachricht Root exudates affect soil stability, water repellency
18.04.2018 | American Society of Agronomy

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>