Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geophysicists detect a molten rock layer deep below the American Southwest

22.06.2007
A sheet of molten rock roughly 10 miles thick spreads underneath much of the American Southwest, some 250 miles below Tucson, Ariz. From the surface, you can't see it, smell it or feel it.

But Arizona geophysicists Daniel Toffelmier and James Tyburczy detected the molten layer with a comparatively new and overlooked technique for exploring the deep Earth that uses magnetic eruptions on the sun.

Toffelmier, a hydrogeologist with Hargis + Associates, Inc., in Mesa, Ariz., graduated from ASU’s School of Earth and Space Exploration in 2006 with a master’s degree in geological sciences. Tyburczy, a professor of geoscience in the school, was Toffelmier's thesis advisor. Their findings, which grew out of Toffelmier's thesis, are presented in the June 21 issue of the scientific journal Nature.

"We had two goals in this research," says Tyburczy. "We wanted to test a hypothesis about what happens to rock in Earth's mantle when it rises to a particular depth – and we also wanted to test a computer modeling technique for studying the deep Earth."

He adds, "Finding that sheet of melt-rock tells us we we're on the right track."

Deep Squeeze

In 2003 two Yale University geoscientists published a hypothesis about the composition and physical state of rocks in Earth's mantle. They proposed that mantle rock rising through a depth of 410 kilometers (about 250 miles) would give up any water mixed into its crystal structure, and the rock would then melt.

"This idea is interesting and fairly controversial among geophysicists," says Tyburczy. "So Dan and I thought we'd test it."

Geophysicists often study the planet's structure using earthquake waves, which are good at detecting changes in rock density. For example, seismic waves show that Earth's density abruptly alters at particular depths. The biggest change, or discontinuity, comes at the core-mantle boundary, some 2,900 kilometers (1,800 miles) deep. Another lies at a depth of 660 km (410 mi), while the third most-prominent discontinuity occurs 410 km (250 mi) down.

But seismic waves don't tell scientists much about rocks' chemical makeup, or about minor elements they contain, or their various mineral phases. Scientists need a different method to study mantle rocks that change composition as they shed water at 410 kilometers' depth and become partly molten in the process.

A geophysical survey technique sensitive to these factors is called magnetotellurics or geomagnetic depth sounding. "Basically," says Toffelmier, "this method measures changes in rocks' electrical conductivity at different depths." Calibrated by laboratory work, magnetotelluric methods permit scientists to estimate the composition of rocks they won't ever be able to hold in their hands.

"Rocks are semiconductors," explains Tyburczy. "And rocks with more hydrogen embedded in their structure conduct better, as do rocks that are partially molten." A common source for hydrogen, he notes, is water, which can lodge throughout a mineral's crystal structure.

But how to measure the conductivity of rocks buried hundreds of miles underfoot" The answer lies 93 million miles away.

Outsourcing

The sun emits a continuous flow of charged atomic particles called the solar wind. This varies in strength as activity on the sun rises and falls. When gusts of particles reach Earth, they induce changes in the planet's magnetosphere, causing in turn weak, but measurable electrical currents to flow through terrestrial rocks deep inside the Earth.

Toffelmier and Tyburczy used electromagnetic field data collected by others for five regions of Earth: the American Southwest, northern Canada, the French Alps, a regionally averaged Europe and the northern Pacific Ocean. Only these few data sets contained information gathered over a long-enough period to be useful in the computer modeling.

"The long-period waves tell you about deep events and features," says Tyburczy, "while short-period ones resolve shallower features." Think of it like an inverted cone extending down into the Earth, he says. The deeper you go, the wider the area that's sampled, and the coarser the resolution.

The modeling approach Toffelmier and Tyburczy used was to start with an initial guess as to rock composition at different depths, run the model, compare the results to the actual field data, and then alter the run's starting point. As they worked, they found that only the data for the southwestern United States showed signs of a water-bearing melt layer at the 410 kilometer (250 mile) depth.

"Without a melt zone at that depth," explains Toffelmier, "we can't match the field observations." But, says Tyburczy, "When we added a highly conductive melt zone, 5 to 30 kilometers [3 to 20 miles] thick, we got a much better fit." The extent of the melt sheet is unknown, however, because the data set is limited in area. There's little chance, the researchers say, that any molten rock from it would erupt at the surface.

Seismic surveys show the 410-kilometer discontinuity is global in scope. But Toffelmier and Tyburczy's work shows that melting at the 410-km depth is patchy at best and far from global. So the Yale hypothesis remains only partly confirmed.

What's next" "Our modeling has been only in one dimension," explains Tyburczy. "We need to start looking in two and three dimensions. We also need to understand better how rocks and minerals change at the incredible pressures deep inside the Earth."

Says Toffelmier, "We've seen only the tip of the iceberg."

Robert Burnham | EurekAlert!
Further information:
http://www.asu.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Hubble captures massive dead disk galaxy that challenges theories of galaxy evolution

22.06.2017 | Physics and Astronomy

New femto-camera with quadrillion fractions of a second resolution

22.06.2017 | Physics and Astronomy

Rice U. chemists create 3-D printed graphene foam

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>