Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists report study results from 'stealth' tsunami that killed 600 in Java last summer

20.06.2007
65-foot waves

Though categorized as magnitude 7.8, the earthquake could scarcely be felt by beachgoers that afternoon. A low tide and wind-driven waves disguised the signs of receding water, so when the tsunami struck, it caught even lifeguards by surprise. That contributed to the death toll of more than 600 persons in Java, Indonesia.

“The general assumption was that if you were near the coast where the earthquake took place, you would feel it and be able to run to higher ground,” said Hermann Fritz, first author of a new Geophysical Research Letters paper about the July 17, 2006 tsunami. “This event caught people by surprise and showed that it’s not always that simple.”

The earthquake was slow rupturing, so it didn’t produce strong ground shaking on Java that might have alerted people on the beach, he explained.

No local warning was issued for the tsunami waves, which arrived only tens of minutes after the earthquake. Fortunately, the event took place on a Monday. Had the massive waves hit the day before, which was a major national holiday, the popular beach would have been much more crowded – and the toll higher.

“Warning systems typically don’t work very well for locations near earthquakes, where there are only tens of minutes between the earthquake and the tsunami’s arrival,” noted Fritz, a Georgia Institute of Technology assistant professor who led an inspection team to Java a week after the event. “It’s pretty much a spontaneous self-evacuation. You normally feel the earthquake or see the ocean withdraw. If you hear the noise in the last tens of seconds before it hits, then it’s just a matter of who makes it and who doesn’t.”

The survey team, which included scientists from five different countries, interviewed survivors and studied evidence left behind by the tsunami, including debris fields. Beyond the quiet nature of the catastrophe, they discovered evidence of a 21-meter (65-foot) wave that hit a portion of the coastline near the island of Nusa Kambangan, indicating a second event that may have added to the severity of the disaster.

Elsewhere along the 300 kilometers of coastline studied by the International Tsunami Survey team, the waves ranged from 5 to 7 meters, 16 to 24 feet.

“This event indicates that there was likely a combination of both a tectonic tsunami and a submarine landslide or a canyon failure triggered by the earthquake,” said Fritz, whose research is supported by the U.S. National Science Foundation. “The runup was unusually high along one portion of the coast, too much for a 7.8 magnitude earthquake. The only explanation we could think of is that a submarine mass movement triggered by the earthquake could have added to the effect of the earthquake, given the essentially straight coastline with little room for large-scale tsunami focusing.”

For people in seismically-active areas like Indonesia, an earthquake usually provides the first warning of a tsunami. Whether caused by an earthquake or an underwater landslide, the first visible sign of an oncoming tsunami is often a rapid withdrawal of the ocean that exposes the seafloor or coral reefs. When that appears, the first tsunami wave won’t be far behind.

In the July 2006 Java tsunami, lifeguards did not notice the withdrawal because the water was receding anyway because of a normal low tide – and because of large wind-produced waves.

“The lifeguards did not recognize the precursors of the tsunami, either the shaking of the earth or the drawing down of the sea,” said Fritz, who also interviewed survivors of the 2004 Indonesian tsunami. “The irony is that many of the lifeguards survived because they were in tall concrete structures sitting more than four meters above the ground, getting just their feet wet – a classic example of vertical evacuation in engineered structures. We interviewed one of them, and it was quite moving. It was his job to watch out for the people on the beach, and what happened was pretty tough on him.”

Survivors compared the sound of the tsunami to that of an aircraft landing or a loud boiling sound. “That primarily comes from the bore forming, or breaking of the waves a couple of hundred meters off shore,” Fritz explained. “In high impact areas, the first tsunami wave then comes in as a rolling wave of water, whereas in low-impact areas it may only be recognized as an unusually fast and high tide.”

A tsunami normally produces more than one wave, and the waves can be 10 or 20 minutes apart. Often, the second or third wave is the largest, so many deaths occur when victims return to low-lying areas to look for relatives or assess damage after the first wave hits.

In Indonesia, the government has instituted education programs to help residents respond to tsunami warning signs by quickly moving to higher ground. In many cases, safety can mean moving a mile inland or 10 meters up a hill.

“It’s always going to be difficult to provide a warning in Java because the earthquake zone is so near,” explained Fritz, a faculty member at Georgia Tech’s Savannah, Ga. campus. “It’s most critical for people to be able to evacuate themselves.”

In other locations, such as the Hawaiian Islands, warning systems are useful because tsunamis caused by continental earthquakes take hours to reach the islands, he said.

In the deep ocean, tsunami waves move at the speed of a jet aircraft. However, when they approach land, the waves slow as their height builds and energy dissipates. By the time they roll onto a beach, the waves may be moving at vehicle highway speed, but that quickly drops as they encounter structures and vegetation.

“If you start running from the beach when the tsunami strikes, chances are you are not going to make it,” Fritz said. “But if you have a head-start, you have a much better chance – if you know where you’re going.”

John Toon | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>