Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists report study results from 'stealth' tsunami that killed 600 in Java last summer

20.06.2007
65-foot waves

Though categorized as magnitude 7.8, the earthquake could scarcely be felt by beachgoers that afternoon. A low tide and wind-driven waves disguised the signs of receding water, so when the tsunami struck, it caught even lifeguards by surprise. That contributed to the death toll of more than 600 persons in Java, Indonesia.

“The general assumption was that if you were near the coast where the earthquake took place, you would feel it and be able to run to higher ground,” said Hermann Fritz, first author of a new Geophysical Research Letters paper about the July 17, 2006 tsunami. “This event caught people by surprise and showed that it’s not always that simple.”

The earthquake was slow rupturing, so it didn’t produce strong ground shaking on Java that might have alerted people on the beach, he explained.

No local warning was issued for the tsunami waves, which arrived only tens of minutes after the earthquake. Fortunately, the event took place on a Monday. Had the massive waves hit the day before, which was a major national holiday, the popular beach would have been much more crowded – and the toll higher.

“Warning systems typically don’t work very well for locations near earthquakes, where there are only tens of minutes between the earthquake and the tsunami’s arrival,” noted Fritz, a Georgia Institute of Technology assistant professor who led an inspection team to Java a week after the event. “It’s pretty much a spontaneous self-evacuation. You normally feel the earthquake or see the ocean withdraw. If you hear the noise in the last tens of seconds before it hits, then it’s just a matter of who makes it and who doesn’t.”

The survey team, which included scientists from five different countries, interviewed survivors and studied evidence left behind by the tsunami, including debris fields. Beyond the quiet nature of the catastrophe, they discovered evidence of a 21-meter (65-foot) wave that hit a portion of the coastline near the island of Nusa Kambangan, indicating a second event that may have added to the severity of the disaster.

Elsewhere along the 300 kilometers of coastline studied by the International Tsunami Survey team, the waves ranged from 5 to 7 meters, 16 to 24 feet.

“This event indicates that there was likely a combination of both a tectonic tsunami and a submarine landslide or a canyon failure triggered by the earthquake,” said Fritz, whose research is supported by the U.S. National Science Foundation. “The runup was unusually high along one portion of the coast, too much for a 7.8 magnitude earthquake. The only explanation we could think of is that a submarine mass movement triggered by the earthquake could have added to the effect of the earthquake, given the essentially straight coastline with little room for large-scale tsunami focusing.”

For people in seismically-active areas like Indonesia, an earthquake usually provides the first warning of a tsunami. Whether caused by an earthquake or an underwater landslide, the first visible sign of an oncoming tsunami is often a rapid withdrawal of the ocean that exposes the seafloor or coral reefs. When that appears, the first tsunami wave won’t be far behind.

In the July 2006 Java tsunami, lifeguards did not notice the withdrawal because the water was receding anyway because of a normal low tide – and because of large wind-produced waves.

“The lifeguards did not recognize the precursors of the tsunami, either the shaking of the earth or the drawing down of the sea,” said Fritz, who also interviewed survivors of the 2004 Indonesian tsunami. “The irony is that many of the lifeguards survived because they were in tall concrete structures sitting more than four meters above the ground, getting just their feet wet – a classic example of vertical evacuation in engineered structures. We interviewed one of them, and it was quite moving. It was his job to watch out for the people on the beach, and what happened was pretty tough on him.”

Survivors compared the sound of the tsunami to that of an aircraft landing or a loud boiling sound. “That primarily comes from the bore forming, or breaking of the waves a couple of hundred meters off shore,” Fritz explained. “In high impact areas, the first tsunami wave then comes in as a rolling wave of water, whereas in low-impact areas it may only be recognized as an unusually fast and high tide.”

A tsunami normally produces more than one wave, and the waves can be 10 or 20 minutes apart. Often, the second or third wave is the largest, so many deaths occur when victims return to low-lying areas to look for relatives or assess damage after the first wave hits.

In Indonesia, the government has instituted education programs to help residents respond to tsunami warning signs by quickly moving to higher ground. In many cases, safety can mean moving a mile inland or 10 meters up a hill.

“It’s always going to be difficult to provide a warning in Java because the earthquake zone is so near,” explained Fritz, a faculty member at Georgia Tech’s Savannah, Ga. campus. “It’s most critical for people to be able to evacuate themselves.”

In other locations, such as the Hawaiian Islands, warning systems are useful because tsunamis caused by continental earthquakes take hours to reach the islands, he said.

In the deep ocean, tsunami waves move at the speed of a jet aircraft. However, when they approach land, the waves slow as their height builds and energy dissipates. By the time they roll onto a beach, the waves may be moving at vehicle highway speed, but that quickly drops as they encounter structures and vegetation.

“If you start running from the beach when the tsunami strikes, chances are you are not going to make it,” Fritz said. “But if you have a head-start, you have a much better chance – if you know where you’re going.”

John Toon | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>