Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dangerous summer heat to increase as Mediterranean region warms

15.06.2007
The number of dangerously hot days in the Mediterranean region could increase by 200 percent to 500 percent in this century, if current rates of greenhouse gas emissions continue, a new analysis finds. Of nations covered by the study, France would undergo the greatest upswing in high-temperature extremes.

Mitigating these grim projections, reductions of greenhouse gas emissions may lessen the intensification of dangerously hot days by as much as 50 percent, the study shows.

In France in 2003, 15,000 people died in an extraordinary heat wave.
In Italy, the high temperatures resulted in almost 3,000 deaths. The researchers find that global warming causes summer temperatures to dramatically exceed the range that correlated with the increased number of deaths.

"Rare events today, like the 2003 heat wave in Europe, become much more common as greenhouse gas concentrations increase," says Noah S. Diffenbaugh, of Purdue University in West Lafayette, Ind., who led the study. Indeed, they "become the norm and the extreme events of the future are unprecedented in their severity," he says.

The analysis indicates that daily temperatures currently found in the hottest two weeks of the summer instead will be found in the coldest two weeks of the summer. In Paris, for example, temperatures that occurred there during the heat wave in 2003 are exceeded a couple dozen times every year in the simulated future.

Fueling the new projections is an intensified impact of global warming at the high end of the Mediterranean's summer temperature range. The researchers find that warming and reduced precipitation in the region contribute to preferential warming of the hottest days.

The most scorching summer days "warm more than the typical summer days warm," Diffenbaugh explains. "One might expect that an average warming of four degrees would equate to each day warming by four degrees, but in fact the hottest days warm quite a bit more," he says.

This is due, in large part, to a surface moisture feedback, the scientists propose. The surface gets dryer as it gets hotter and the dry soil leads to less moisture in the area and less evaporative cooling. The locations of intensified warming on hottest days of the year match the locations where surface drying occurs, Diffenbaugh says.

In addition to threatening people's lives, soaring temperatures could harm the Mediterranean region's economy, notes study co-author Jeremy S. Pal of Loyola Marymount University in Los Angeles, Calif.

The region extends into 21 European, African, and Asian countries that border the Mediterranean Sea. Its metropolitan areas include Rome, Paris, Barcelona, Algiers, Cairo, Istanbul, and Tel Aviv. Negative consequences in the area could affect human health, water resources, agriculture, and energy demand, Pal adds.

The ultimate severity of the damage depends on what steps are taken today. "Technological and behavioral changes that are made now will have a big influence on what actually happens in the future," says Diffenbaugh. "Decreases in greenhouse gas emissions greatly reduce the impact."

Still, "we see negative effects even with reduced emissions," he notes.

In the new work, Diffenbaugh, Pal, and colleagues in Italy and China, analyze climate simulations covering two time periods: 1961 to 1989 and 2071 to 2099. They report their results in the June 15 Geophysical Research Letters, a publication of the American Geophysical Union.

The simulations assume emissions scenarios as proposed in 2000 by the United Nations Intergovernmental Panel on Climate Change (IPCC), a leading scientific organization that evaluates climate- change-related science. One scenario anticipates that greenhouse gas emissions will continue to increase exponentially. The other, reduced-emissions scenario incorporates diminished population growth and greater environmental concern.

Although newer emissions scenarios have been generated since 2000, a recent assessment by IPCC found that those scenarios differ little in their emissions ranges from the older ones, Diffenbaugh says.

The Mediterranean region study also uses the National Weather Service Heat Index in the analysis of the heat stress response to increasing greenhouse gas concentrations.

The areas most likely to face substantial increases in dangerous heat index are concentrated largely in coastal areas, the researchers find. The team can discern such localized effects because the climate model used in the study has a resolution of 20 kilometers (12 miles) -- perhaps the highest spatial resolution available for the Mediterranean region. Much as increased resolution in a photograph makes a clearer picture and allows one to zoom in without blurring the image, the powerful resolution of the climate model allows researchers to gather detailed information about particular areas. The researchers used a supercomputer in the National Climate Center in Beijing to run the climate model.

"This is the first time this amplification signal over coastal areas could be seen and quantified," says co-author Filippo Giorgi of the International Centre for Theoretical Physics in Trieste, Italy. "Coastal regions are particularly vulnerable because they will likely be affected by other important climate change related stresses, such as a rising sea level." Many large cities in the Mediterranean region are on the coast, Giorgi notes.

The study was funded by the Italy-USA collaborative agreement on climate change research and the National Science Foundation.

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>