Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dangerous summer heat to increase as Mediterranean region warms

15.06.2007
The number of dangerously hot days in the Mediterranean region could increase by 200 percent to 500 percent in this century, if current rates of greenhouse gas emissions continue, a new analysis finds. Of nations covered by the study, France would undergo the greatest upswing in high-temperature extremes.

Mitigating these grim projections, reductions of greenhouse gas emissions may lessen the intensification of dangerously hot days by as much as 50 percent, the study shows.

In France in 2003, 15,000 people died in an extraordinary heat wave.
In Italy, the high temperatures resulted in almost 3,000 deaths. The researchers find that global warming causes summer temperatures to dramatically exceed the range that correlated with the increased number of deaths.

"Rare events today, like the 2003 heat wave in Europe, become much more common as greenhouse gas concentrations increase," says Noah S. Diffenbaugh, of Purdue University in West Lafayette, Ind., who led the study. Indeed, they "become the norm and the extreme events of the future are unprecedented in their severity," he says.

The analysis indicates that daily temperatures currently found in the hottest two weeks of the summer instead will be found in the coldest two weeks of the summer. In Paris, for example, temperatures that occurred there during the heat wave in 2003 are exceeded a couple dozen times every year in the simulated future.

Fueling the new projections is an intensified impact of global warming at the high end of the Mediterranean's summer temperature range. The researchers find that warming and reduced precipitation in the region contribute to preferential warming of the hottest days.

The most scorching summer days "warm more than the typical summer days warm," Diffenbaugh explains. "One might expect that an average warming of four degrees would equate to each day warming by four degrees, but in fact the hottest days warm quite a bit more," he says.

This is due, in large part, to a surface moisture feedback, the scientists propose. The surface gets dryer as it gets hotter and the dry soil leads to less moisture in the area and less evaporative cooling. The locations of intensified warming on hottest days of the year match the locations where surface drying occurs, Diffenbaugh says.

In addition to threatening people's lives, soaring temperatures could harm the Mediterranean region's economy, notes study co-author Jeremy S. Pal of Loyola Marymount University in Los Angeles, Calif.

The region extends into 21 European, African, and Asian countries that border the Mediterranean Sea. Its metropolitan areas include Rome, Paris, Barcelona, Algiers, Cairo, Istanbul, and Tel Aviv. Negative consequences in the area could affect human health, water resources, agriculture, and energy demand, Pal adds.

The ultimate severity of the damage depends on what steps are taken today. "Technological and behavioral changes that are made now will have a big influence on what actually happens in the future," says Diffenbaugh. "Decreases in greenhouse gas emissions greatly reduce the impact."

Still, "we see negative effects even with reduced emissions," he notes.

In the new work, Diffenbaugh, Pal, and colleagues in Italy and China, analyze climate simulations covering two time periods: 1961 to 1989 and 2071 to 2099. They report their results in the June 15 Geophysical Research Letters, a publication of the American Geophysical Union.

The simulations assume emissions scenarios as proposed in 2000 by the United Nations Intergovernmental Panel on Climate Change (IPCC), a leading scientific organization that evaluates climate- change-related science. One scenario anticipates that greenhouse gas emissions will continue to increase exponentially. The other, reduced-emissions scenario incorporates diminished population growth and greater environmental concern.

Although newer emissions scenarios have been generated since 2000, a recent assessment by IPCC found that those scenarios differ little in their emissions ranges from the older ones, Diffenbaugh says.

The Mediterranean region study also uses the National Weather Service Heat Index in the analysis of the heat stress response to increasing greenhouse gas concentrations.

The areas most likely to face substantial increases in dangerous heat index are concentrated largely in coastal areas, the researchers find. The team can discern such localized effects because the climate model used in the study has a resolution of 20 kilometers (12 miles) -- perhaps the highest spatial resolution available for the Mediterranean region. Much as increased resolution in a photograph makes a clearer picture and allows one to zoom in without blurring the image, the powerful resolution of the climate model allows researchers to gather detailed information about particular areas. The researchers used a supercomputer in the National Climate Center in Beijing to run the climate model.

"This is the first time this amplification signal over coastal areas could be seen and quantified," says co-author Filippo Giorgi of the International Centre for Theoretical Physics in Trieste, Italy. "Coastal regions are particularly vulnerable because they will likely be affected by other important climate change related stresses, such as a rising sea level." Many large cities in the Mediterranean region are on the coast, Giorgi notes.

The study was funded by the Italy-USA collaborative agreement on climate change research and the National Science Foundation.

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

nachricht Supercomputing helps researchers understand Earth's interior
23.05.2017 | University of Illinois College of Liberal Arts & Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>