Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dangerous summer heat to increase as Mediterranean region warms

15.06.2007
The number of dangerously hot days in the Mediterranean region could increase by 200 percent to 500 percent in this century, if current rates of greenhouse gas emissions continue, a new analysis finds. Of nations covered by the study, France would undergo the greatest upswing in high-temperature extremes.

Mitigating these grim projections, reductions of greenhouse gas emissions may lessen the intensification of dangerously hot days by as much as 50 percent, the study shows.

In France in 2003, 15,000 people died in an extraordinary heat wave.
In Italy, the high temperatures resulted in almost 3,000 deaths. The researchers find that global warming causes summer temperatures to dramatically exceed the range that correlated with the increased number of deaths.

"Rare events today, like the 2003 heat wave in Europe, become much more common as greenhouse gas concentrations increase," says Noah S. Diffenbaugh, of Purdue University in West Lafayette, Ind., who led the study. Indeed, they "become the norm and the extreme events of the future are unprecedented in their severity," he says.

The analysis indicates that daily temperatures currently found in the hottest two weeks of the summer instead will be found in the coldest two weeks of the summer. In Paris, for example, temperatures that occurred there during the heat wave in 2003 are exceeded a couple dozen times every year in the simulated future.

Fueling the new projections is an intensified impact of global warming at the high end of the Mediterranean's summer temperature range. The researchers find that warming and reduced precipitation in the region contribute to preferential warming of the hottest days.

The most scorching summer days "warm more than the typical summer days warm," Diffenbaugh explains. "One might expect that an average warming of four degrees would equate to each day warming by four degrees, but in fact the hottest days warm quite a bit more," he says.

This is due, in large part, to a surface moisture feedback, the scientists propose. The surface gets dryer as it gets hotter and the dry soil leads to less moisture in the area and less evaporative cooling. The locations of intensified warming on hottest days of the year match the locations where surface drying occurs, Diffenbaugh says.

In addition to threatening people's lives, soaring temperatures could harm the Mediterranean region's economy, notes study co-author Jeremy S. Pal of Loyola Marymount University in Los Angeles, Calif.

The region extends into 21 European, African, and Asian countries that border the Mediterranean Sea. Its metropolitan areas include Rome, Paris, Barcelona, Algiers, Cairo, Istanbul, and Tel Aviv. Negative consequences in the area could affect human health, water resources, agriculture, and energy demand, Pal adds.

The ultimate severity of the damage depends on what steps are taken today. "Technological and behavioral changes that are made now will have a big influence on what actually happens in the future," says Diffenbaugh. "Decreases in greenhouse gas emissions greatly reduce the impact."

Still, "we see negative effects even with reduced emissions," he notes.

In the new work, Diffenbaugh, Pal, and colleagues in Italy and China, analyze climate simulations covering two time periods: 1961 to 1989 and 2071 to 2099. They report their results in the June 15 Geophysical Research Letters, a publication of the American Geophysical Union.

The simulations assume emissions scenarios as proposed in 2000 by the United Nations Intergovernmental Panel on Climate Change (IPCC), a leading scientific organization that evaluates climate- change-related science. One scenario anticipates that greenhouse gas emissions will continue to increase exponentially. The other, reduced-emissions scenario incorporates diminished population growth and greater environmental concern.

Although newer emissions scenarios have been generated since 2000, a recent assessment by IPCC found that those scenarios differ little in their emissions ranges from the older ones, Diffenbaugh says.

The Mediterranean region study also uses the National Weather Service Heat Index in the analysis of the heat stress response to increasing greenhouse gas concentrations.

The areas most likely to face substantial increases in dangerous heat index are concentrated largely in coastal areas, the researchers find. The team can discern such localized effects because the climate model used in the study has a resolution of 20 kilometers (12 miles) -- perhaps the highest spatial resolution available for the Mediterranean region. Much as increased resolution in a photograph makes a clearer picture and allows one to zoom in without blurring the image, the powerful resolution of the climate model allows researchers to gather detailed information about particular areas. The researchers used a supercomputer in the National Climate Center in Beijing to run the climate model.

"This is the first time this amplification signal over coastal areas could be seen and quantified," says co-author Filippo Giorgi of the International Centre for Theoretical Physics in Trieste, Italy. "Coastal regions are particularly vulnerable because they will likely be affected by other important climate change related stresses, such as a rising sea level." Many large cities in the Mediterranean region are on the coast, Giorgi notes.

The study was funded by the Italy-USA collaborative agreement on climate change research and the National Science Foundation.

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>