Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Geoengineering -- A quick fix with big risks

05.06.2007
Radical steps to engineer Earth’s climate by blocking sunlight could drastically cool the planet, but could just as easily worsen the situation if these projects fail or are suddenly halted, according to a new computer modeling study.

The experiments, described in the June 4 early online edition of The Proceedings of the National Academy of Sciences, look at what might happen if we attempt to slow climate change by “geoengineering” a solar filter instead of reducing carbon dioxide emissions. The researchers used a computer model to simulate a decrease in solar radiation across the entire planet, but assumed that that the current trend of increasing global carbon dioxide emissions would continue for the rest of this century.

“Given current political and economic trends, it is easy to become pessimistic about the prospect that needed cuts in carbon dioxide emissions will come soon enough or be deep enough to avoid irreversibly damaging our climate,” said co-author Ken Caldeira of the Carnegie Institution’s Department of Global Ecology. “If we want to consider more dramatic options, such as deliberately altering the Earth’s climate, it’s important to understand how these strategies might play out.”

Although the term “geoengineering” describes any measure intended to modify the Earth at the planetary scale, the current study focuses on changes that reduce the amount of solar radiation that reaches the planet’s surface. Several methods to accomplish this have been suggested, from filling the upper atmosphere with light-reflecting sulfate particles to installing mirrors in orbit around the planet.

According to the model, even after greenhouse gases warm the planet, geoengineering schemes could cool off the Earth within a few decades to temperatures not seen since the dawn of the industrial revolution. This is good news, according to Caldeira and lead author Damon Matthews of Concordia University in Montreal, Canada, because it suggests there is no need to rush into building a geoengineering system before it is absolutely necessary.

However, the study also offers some bad news. If any hypothetical geoengineering program were to fail or be cancelled for any reason, a catastrophic, decade-long spike in global temperatures could result, along with rates of warming 20 times greater than we are experiencing today.

“If we become addicted to a planetary sunshade, we could experience a painful withdrawal if our fix was suddenly cut off,” Caldeira explained. “This needs to be taken into consideration if we ever think seriously about implementing a geoengineering strategy.”

Caldeira and Matthews believe that lower temperatures in a geoengineered world would result in more efficient storage of carbon in plants and soils. However, if the geoengineering system failed and temperatures suddenly increased, much of that stored carbon would be released back into the atmosphere. This, in turn, could lead to accelerated greenhouse warming.

Reduced solar radiation not only affects temperatures in the simulations, but also global rainfall patterns. In a model run with no simulated geoengineering, warmer temperatures resulted in more rainfall over the oceans, while increased carbon dioxide levels caused a decrease in evaporation from plants’ leaves, and consequently a decrease in rainfall over tropical forests. In contrast, the geoengineering scenario—which had lower temperatures but the same high levels of carbon dioxide—resulted only in a decrease in tropical forest rainfall.

“Many people argue that we need to prevent climate change. Others argue that we need to keep emitting greenhouse gases,” Caldeira said. “Geoengineering schemes have been proposed as a cheap fix that could let us have our cake and eat it, too. But geoengineering schemes are not well understood. Our study shows that planet-sized geoengineering means planet-sized risks.”

Caldeira feels it is important to develop a scientific understanding of proposed geoengineering schemes. “I hope I never need a parachute, but if my plane is going down in flames, I sure hope I have a parachute handy,” Caldeira said. ”I hope we’ll never need geoengineering schemes, but if a climate catastrophe occurs, I sure hope we will have thought through our options carefully.”

Ken Caldeira | EurekAlert!
Further information:
http://www.stanford.edu
http://www.carnegieinstitution.org

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>