Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA researcher finds days of snow melting on the rise in Greenland

31.05.2007
In 2006, Greenland experienced more days of melting snow and at higher altitudes than average over the past 18 years, according to a new NASA-funded project using satellite observations.

Daily satellite observations have shown snow melting on Greenland’s ice sheet over an increased number of days. The resulting data help scientists understand better the speed of glacier flow, how much water will pour from the ice sheet into the surrounding ocean and how much of the sun’s radiation will reflect back into the atmosphere.

"We now have the ability to monitor melting snow on Greenland’s ice sheet on a daily basis using sensors on satellites measuring the electromagnetic signal naturally emitted by the ice sheet," said Marco Tedesco, research scientist at the Joint Center for Earth Systems Technology cooperatively managed by NASA’s Goddard Space Flight Center, Greenbelt, Md., and the University of Maryland at Baltimore County, Baltimore.

"The sensors detected that snowmelt occurred more than 10 days longer than the average over certain areas of Greenland in 2006," said Tedesco, who is lead author of the study, which appears in the May 29 issue of the American Geophysical Union's Eos.

Tedesco applied a new method for detecting melting snow to data from the Special Sensor Microwave Imaging radiometer (SSM/I) flying aboard the Defense Meteorological Satellite Program spacecraft. The sensor can see through clouds and does not require sunlight to make measurements, providing researchers with multiple daily observations. Tedesco has updated the results annually since 1988, which has enabled him to analyze trends in the duration of snowmelt and extent over specific areas of Greenland.

To understand why these trends are important to track, Tedesco explained one of the consequences of melting snow. "Although wet and dry snow look similar at first glance, wet and re-frozen snow absorb more of the sun’s radiation, reflecting only 50-60 percent back into the atmosphere. Dry snow, on the other hand, reflects about 85 percent of the sun’s radiation," he said. "In other words, melting snow absorbs three to four times as much energy as dry snow, greatly affecting Earth’s energy budget."

The Earth’s energy budget refers to the balance between incoming sunlight and outgoing radiant energy.

Greenland's melting snow can have a major impact on the vast ice sheet and on sea level around the world. "The melting snow produces liquid water that will potentially influence sea levels," said Tedesco. "And some of the liquid water will drain into the glaciers through cracks and vertical passages, called moulins, reaching the bedrock below and lubricating the ice sheet."

Previous studies by NASA Goddard researchers Jay Zwally and Waleed Abdalati have also observed that the water from summer melting at the ice sheet's base can increase how fast the ice moves, causing it to contribute more rapidly to sea level than previously thought. This phenomenon, together with others recently observed, suggest that the ice might respond more quickly to a warming climate.

To estimate the overall impact on Greenland's snow, Tedesco's study calculated a "melt index," which is the number of melting days multiplied by the melting area. The 2006 data followed the increasing trend from 1988 to 2005. Areas along Greenland’s western, southeastern and northeastern coast witnessed the largest number of melt days in 2006.

"The International Polar Year’s focus on this part of the world gives us an ideal opportunity to combine research results on snowmelt from satellites as well as from climate models to better understand how melting is really affecting the mass balance of Greenland’s ice sheet. We need to link all of this data together to get a better view of this complex system."

Gretchen Cook-Anderson | EurekAlert!
Further information:
http://www.nasa.gov/centers/goddard/news/topstory/2007/snowmelt_greenland.html

More articles from Earth Sciences:

nachricht New insights into the ancestors of all complex life
29.05.2017 | University of Bristol

nachricht A 3-D look at the 2015 El Niño
29.05.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>