Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA researcher finds days of snow melting on the rise in Greenland

31.05.2007
In 2006, Greenland experienced more days of melting snow and at higher altitudes than average over the past 18 years, according to a new NASA-funded project using satellite observations.

Daily satellite observations have shown snow melting on Greenland’s ice sheet over an increased number of days. The resulting data help scientists understand better the speed of glacier flow, how much water will pour from the ice sheet into the surrounding ocean and how much of the sun’s radiation will reflect back into the atmosphere.

"We now have the ability to monitor melting snow on Greenland’s ice sheet on a daily basis using sensors on satellites measuring the electromagnetic signal naturally emitted by the ice sheet," said Marco Tedesco, research scientist at the Joint Center for Earth Systems Technology cooperatively managed by NASA’s Goddard Space Flight Center, Greenbelt, Md., and the University of Maryland at Baltimore County, Baltimore.

"The sensors detected that snowmelt occurred more than 10 days longer than the average over certain areas of Greenland in 2006," said Tedesco, who is lead author of the study, which appears in the May 29 issue of the American Geophysical Union's Eos.

Tedesco applied a new method for detecting melting snow to data from the Special Sensor Microwave Imaging radiometer (SSM/I) flying aboard the Defense Meteorological Satellite Program spacecraft. The sensor can see through clouds and does not require sunlight to make measurements, providing researchers with multiple daily observations. Tedesco has updated the results annually since 1988, which has enabled him to analyze trends in the duration of snowmelt and extent over specific areas of Greenland.

To understand why these trends are important to track, Tedesco explained one of the consequences of melting snow. "Although wet and dry snow look similar at first glance, wet and re-frozen snow absorb more of the sun’s radiation, reflecting only 50-60 percent back into the atmosphere. Dry snow, on the other hand, reflects about 85 percent of the sun’s radiation," he said. "In other words, melting snow absorbs three to four times as much energy as dry snow, greatly affecting Earth’s energy budget."

The Earth’s energy budget refers to the balance between incoming sunlight and outgoing radiant energy.

Greenland's melting snow can have a major impact on the vast ice sheet and on sea level around the world. "The melting snow produces liquid water that will potentially influence sea levels," said Tedesco. "And some of the liquid water will drain into the glaciers through cracks and vertical passages, called moulins, reaching the bedrock below and lubricating the ice sheet."

Previous studies by NASA Goddard researchers Jay Zwally and Waleed Abdalati have also observed that the water from summer melting at the ice sheet's base can increase how fast the ice moves, causing it to contribute more rapidly to sea level than previously thought. This phenomenon, together with others recently observed, suggest that the ice might respond more quickly to a warming climate.

To estimate the overall impact on Greenland's snow, Tedesco's study calculated a "melt index," which is the number of melting days multiplied by the melting area. The 2006 data followed the increasing trend from 1988 to 2005. Areas along Greenland’s western, southeastern and northeastern coast witnessed the largest number of melt days in 2006.

"The International Polar Year’s focus on this part of the world gives us an ideal opportunity to combine research results on snowmelt from satellites as well as from climate models to better understand how melting is really affecting the mass balance of Greenland’s ice sheet. We need to link all of this data together to get a better view of this complex system."

Gretchen Cook-Anderson | EurekAlert!
Further information:
http://www.nasa.gov/centers/goddard/news/topstory/2007/snowmelt_greenland.html

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>