Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swansea University research to give a GLIMPSE of the future of Greenland’s ice sheet

31.05.2007
A scientist at Swansea University is to receive a £800,000 Leverhulme Trust Award to establish a team to investigate the future stability of the Greenland ice sheet.

Nine researchers, including three PhD students, will work in Swansea and Greenland on the five-year project, called Greenland Ice Margin Prediction, Stability and Evolution (GLIMPSE), which begins in September 2007.

The project will be led by Polar Medal awardee Professor Tavi Murray, from the University’s School of the Environment and Society. The project’s key outcome will be better predictions of the future of the Greenland ice sheet, and therefore the rate of future sea level rise.

The Greenland ice sheet is changing rapidly, and contributing to current global sea-levels. Recent observations show many glaciers have speeded up causing these changes, but glaciologists do not yet understand why or how.

The models used to predict future sea-level do not include the changes in speed, and consequently underestimate Greenland’s future contribution to sea-level rise.

The GLIMPSE project will build a multi-disciplinary group, based in Swansea University, who will collaborate with international experts to address these deficiencies.

The team will collaborate with colleagues in the Universities of Sheffield, Leeds, Newcastle, and Alaska, as well as National Aeronautics and Space Administration (NASA), USA, the UK’s Natural Environment Research Council (NERC), the Danish Meteorological Institute, and the University Centre in Svalbard, Norway to undertake the work.

An annual average temperature rise of more than 3ºC is predicted to cause complete melting of the Greenland ice sheet, which would eventually raise sea-level by more than six metres. The 1990s was the warmest decade in the Arctic since records began, and most climate predictions for the 21st century show a 5-7ºC temperature rise in the Arctic.

Current models suggest the deglaciation of Greenland in response to these rising temperatures should occur slowly over 1000s of years, but the models used do not include recent observed changes in ice dynamics.

The Intergovernmental Panel on Climate Change (IPCC) explains why: “Because a basis in published literature is lacking.”

Professor Murray, who will lead the GLIMPSE group, said: “Our lack of understanding of how Greenland’s outlet glaciers are changing means that models will consistently under-predict the rate of sea-level rise from Greenland. The GLIMPSE project will help ensure these models make better predictions of the Greenland ice sheet’s future.”

She added: “I believe the stability of the Greenland ice sheet to be the most pressing question facing glaciology, and certainly one of the most pressing problems facing our civilisation.”

Professor Michael Barnsley, Pro-Vice-Chancellor and Head of the School of the Environment and Society at Swansea University, said: “This timely award for Professor Murray, which coincides with the International Polar Year and the International Year of Planet Earth, is a further example of how Swansea continues to contribute to world-class scientific research into climate change.”

This summer, Professor Murray and colleague Dr Tim James from the Glaciology Group at Swansea University will travel to Greenland to collect data from the Helheim and Kangerdlussuaq glaciers, with the NERC Airborne Research and Survey Facility (ARSF).

Research published in 2006 led by Dr Adrian Luckman from the Swansea Glaciology Group showed these glaciers had doubled in speed, so they are a natural target for the GLIMPSE team.

The progress of the GLIMPSE project in the field can be followed through postings of a field-based web diary and photographs by satellite phone at www.greenlandice.org.

For further information about Swansea University’s School of the Environment and Society, please visit www.swansea.ac.uk/environment_society/.

Bethan Evans | alfa
Further information:
http://www.swansea.ac.uk
http://www.swansea.ac.uk/environment_society

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>