Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant blue jet caught on film

14.03.2002


Flashes this big might explain the 300,000-volt difference between the ionosphere and the ground


A sprite is like a blue jet but travels the other way.
© Uni. Alaska Fairbanks


Blue jets connect Earth’s electric circuit.

Video images captured in Puerto Rico suggest that blue flashes of light, much like lightning, feed energy from thunderstorms up into the Earth’s ionosphere - a blanket of electrically charged air some 70 kilometres above the ground1.

Some researchers suspect that such phenomena may also fix nitrogen for plants to use and interact with the ozone layer2.



The images, taken in September 2001, show the largest blue jet ever to be caught on camera. "It really was a gigantic flash," says Victor Pasko of Pennsylvania State University, who led the observation team. "With the naked eye you could even see it rising," he recalls.

Blue jets are often associated with thunderstorms, but until now were thought to be relatively small. The Puerto Rican jet stretched from the top of a small thunderstorm to the lower edge of the ionosphere, filling an estimated 6,000 cubic kilometres of atmosphere.

Flashes this big might explain the 300,000-volt difference between the charge of the ionosphere and the ground. Physicists have long agreed that something must link the two regions to complete the global electrical circuit (GEC). Until the latest film, nothing had been seen that reached high enough from the cloud tops to do the job.

"We knew the currents were there, but there was no visual evidence" says Davis Sentman, the physicist at the University of Alaska in Fairbanks who discovered blue jets in 1994. The film "really advances the science in this field", he says.

That the sighting was associated with the kind of small, localized storm common worldwide, suggests that large blue jets could also be common. If so, they might influence atmospheric chemistry: their electrical energy could encourage gases to react with one another. "The effect may be there but we don’t know if it’s dramatically important," admits Pasko.

Sprites, elves, trolls and pixies

In the past decade, high-speed, light-sensitive cameras have allowed scientists to describe a menagerie of electrical phenomena, which bear names that would be more at home in a Tolkien novel than a physics textbook. Sprites, blue jets and associated flashes called elves, crawlers, trolls and pixies are all fleeting electrical discharges that accompany thunderstorms.

All these phenomena are hard to spot, as they last for less than a blink of an eye and are obscured from below by cloud. They can be glimpsed along storm fronts and from aeroplanes flying above the clouds.

Sprites, which might also help to maintain the GEC, work a bit like blue jets in reverse. They are pink, or sometimes red, and occur when current from just below the ionosphere moves downwards towards thunderstorms. As with jets, this current excites atoms along the way, causing them to emit light.

References

  1. Pasko, V. P., Stanley, M. A., Mathews, J. D., Inan, U. S. & Wood, T. G. Electrical discharge from a thundercloud top to the lower ionosphere. Nature, 416, 152 - 154, (2002).
  2. Mishin, E. Ozone layer perturbation by a single blue jet. Geophysical Research Letters, 24, 1919 - 1922, (1997).


TOM CLARKE | © Nature News Service

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>