Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant blue jet caught on film

14.03.2002


Flashes this big might explain the 300,000-volt difference between the ionosphere and the ground


A sprite is like a blue jet but travels the other way.
© Uni. Alaska Fairbanks


Blue jets connect Earth’s electric circuit.

Video images captured in Puerto Rico suggest that blue flashes of light, much like lightning, feed energy from thunderstorms up into the Earth’s ionosphere - a blanket of electrically charged air some 70 kilometres above the ground1.

Some researchers suspect that such phenomena may also fix nitrogen for plants to use and interact with the ozone layer2.



The images, taken in September 2001, show the largest blue jet ever to be caught on camera. "It really was a gigantic flash," says Victor Pasko of Pennsylvania State University, who led the observation team. "With the naked eye you could even see it rising," he recalls.

Blue jets are often associated with thunderstorms, but until now were thought to be relatively small. The Puerto Rican jet stretched from the top of a small thunderstorm to the lower edge of the ionosphere, filling an estimated 6,000 cubic kilometres of atmosphere.

Flashes this big might explain the 300,000-volt difference between the charge of the ionosphere and the ground. Physicists have long agreed that something must link the two regions to complete the global electrical circuit (GEC). Until the latest film, nothing had been seen that reached high enough from the cloud tops to do the job.

"We knew the currents were there, but there was no visual evidence" says Davis Sentman, the physicist at the University of Alaska in Fairbanks who discovered blue jets in 1994. The film "really advances the science in this field", he says.

That the sighting was associated with the kind of small, localized storm common worldwide, suggests that large blue jets could also be common. If so, they might influence atmospheric chemistry: their electrical energy could encourage gases to react with one another. "The effect may be there but we don’t know if it’s dramatically important," admits Pasko.

Sprites, elves, trolls and pixies

In the past decade, high-speed, light-sensitive cameras have allowed scientists to describe a menagerie of electrical phenomena, which bear names that would be more at home in a Tolkien novel than a physics textbook. Sprites, blue jets and associated flashes called elves, crawlers, trolls and pixies are all fleeting electrical discharges that accompany thunderstorms.

All these phenomena are hard to spot, as they last for less than a blink of an eye and are obscured from below by cloud. They can be glimpsed along storm fronts and from aeroplanes flying above the clouds.

Sprites, which might also help to maintain the GEC, work a bit like blue jets in reverse. They are pink, or sometimes red, and occur when current from just below the ionosphere moves downwards towards thunderstorms. As with jets, this current excites atoms along the way, causing them to emit light.

References

  1. Pasko, V. P., Stanley, M. A., Mathews, J. D., Inan, U. S. & Wood, T. G. Electrical discharge from a thundercloud top to the lower ionosphere. Nature, 416, 152 - 154, (2002).
  2. Mishin, E. Ozone layer perturbation by a single blue jet. Geophysical Research Letters, 24, 1919 - 1922, (1997).


TOM CLARKE | © Nature News Service

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>