Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dust could settle Himalaya debates

14.03.2002


Great loess: layers of ancient dust give clues to mountains’ birth.
© Nature


Deserts covered Central Asia as early as 22 million years ago

The great Asian deserts developed 22 million years ago at the latest, 14 million years earlier than had been thought. So concludes a new analysis of Chinese soils, filling in another piece of the puzzle of the Himalayas’ birth.

Today, huge deserts characterize the vast landmasses inside Asia, the largest continent on Earth. Here, cut off by the Himalayas from the humidity of the Indian Ocean and far from any other seas, the climate is extreme. Winters are ice-cold, summers blazing hot and moisture scarce.



But some time between 36 and 22 million years ago, rivers flowed through these desiccated wastelands. The Himalayas had just started pushing up into the skies. And colliding continents had only recently swallowed the ancient equatorial ocean of Tethys, which had separated Eurasia from the fragments of what was once Gondwanaland.

The transition between these very different climates happened at least 22 million years ago, estimate Zhentang Guo of the Chinese Academy of Sciences and co-workers1. At two mountain sites in China’s Qinan basin, just 160 km northeast of the Tibetan plateau, the researchers found 231 layers of ancient, brownish, wind-blown dust, called loess.

The loess was deposited from 22 to 6.2 million years ago between layers of red clay. Each layer contains about 65,000 years’ worth of deposits. Such large layers imply that extensive deserts existed nearby: the Asian interior.

"The deserts would have been relatively cold, like the Gobi today, as opposed to the Sahara," explains Bill Ruddiman of the University of Virginia, one of the team. Cold, dry, winter monsoon winds transported the desert dusts to their long-term resting place.

The Qinan basin’s stripy landscape was produced by a climate of dry winter monsoons punctuated by moist summer monsoons. The reddish clay layers were produced locally during more humid periods, when weaker winter monsoons meant that desert dust didn’t make it to the Loess plateau, the researchers believe.

"To block the moisture, there must have been some sort of a mountain range in place 22 million years ago", says Jay Quade, a desert geoscientist at the University of Arizona in Tucson. The existence of the central Asian deserts 22 million years ago offers an independent perspective on the uplift of the Himalayas, the details of which are still controversial.

Before now, little was known about the region’s climate that far back in time. Most of the studies on Chinese loess have centred on the Quaternary period, less than 1.6 million years ago. Previously, the oldest reliably dated loess finds were only about 6 million years old.

References

  1. Guo, Z. T. et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416, 159 - 163 , (2002).

HEIKE LANGENBERG | © Nature News Service

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>