Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dust could settle Himalaya debates

14.03.2002


Great loess: layers of ancient dust give clues to mountains’ birth.
© Nature


Deserts covered Central Asia as early as 22 million years ago

The great Asian deserts developed 22 million years ago at the latest, 14 million years earlier than had been thought. So concludes a new analysis of Chinese soils, filling in another piece of the puzzle of the Himalayas’ birth.

Today, huge deserts characterize the vast landmasses inside Asia, the largest continent on Earth. Here, cut off by the Himalayas from the humidity of the Indian Ocean and far from any other seas, the climate is extreme. Winters are ice-cold, summers blazing hot and moisture scarce.



But some time between 36 and 22 million years ago, rivers flowed through these desiccated wastelands. The Himalayas had just started pushing up into the skies. And colliding continents had only recently swallowed the ancient equatorial ocean of Tethys, which had separated Eurasia from the fragments of what was once Gondwanaland.

The transition between these very different climates happened at least 22 million years ago, estimate Zhentang Guo of the Chinese Academy of Sciences and co-workers1. At two mountain sites in China’s Qinan basin, just 160 km northeast of the Tibetan plateau, the researchers found 231 layers of ancient, brownish, wind-blown dust, called loess.

The loess was deposited from 22 to 6.2 million years ago between layers of red clay. Each layer contains about 65,000 years’ worth of deposits. Such large layers imply that extensive deserts existed nearby: the Asian interior.

"The deserts would have been relatively cold, like the Gobi today, as opposed to the Sahara," explains Bill Ruddiman of the University of Virginia, one of the team. Cold, dry, winter monsoon winds transported the desert dusts to their long-term resting place.

The Qinan basin’s stripy landscape was produced by a climate of dry winter monsoons punctuated by moist summer monsoons. The reddish clay layers were produced locally during more humid periods, when weaker winter monsoons meant that desert dust didn’t make it to the Loess plateau, the researchers believe.

"To block the moisture, there must have been some sort of a mountain range in place 22 million years ago", says Jay Quade, a desert geoscientist at the University of Arizona in Tucson. The existence of the central Asian deserts 22 million years ago offers an independent perspective on the uplift of the Himalayas, the details of which are still controversial.

Before now, little was known about the region’s climate that far back in time. Most of the studies on Chinese loess have centred on the Quaternary period, less than 1.6 million years ago. Previously, the oldest reliably dated loess finds were only about 6 million years old.

References

  1. Guo, Z. T. et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416, 159 - 163 , (2002).

HEIKE LANGENBERG | © Nature News Service

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>