Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Russian basement hides the riddle of the Earth’s oxygen

24.05.2007
They are literally going to dig deeper into the Precambrian. Two geologists from the Geological Survey of Norway (NGU), Victor A. Melezhik and Aivo Lepland, will drill into 2.5 to 2 billion year-old rocks in Russia to seek the interaction between geological processes that created the ”modern Earth”.

“This is a geological dream coming true,” says Victor Melezhik. For many years, this Norwegian-Russian geologist has been seeking a chance to study the depths of the Russian basement.

Now he’s getting started, along with his colleague at NGU, Aivo Lepland.

Geological riddles

Six million NOK from the International Continental Drilling Programme (ICDP) are ready to be used to solve old geological riddles on the Kola Peninsula and the banks of Lake Onega in Karelia. Sediments and lavas dating from 2.5 to 2 billion years ago conceal valuable information, first and foremost about the oxygen content in the atmosphere which increased at that time.

”What really happened when the world got a more oxygen-rich atmosphere about 2.3 billion years ago? Was it because oxygen-producing life forms expanded? Or did geological evolution cause the Earth’s surface to become gradually more oxic? That could have led to the production of oxygen exceeding its uptake, resulting in the excess oxygen accumulating in the atmosphere,” Aivo Lepland suggests.

“We want to learn more about the fundamental processes behind the increase in oxygen. How long did it take and how did the various events interact and influence one another?” Victor Melezhik adds.

Oxygen and oil

The increase of oxygen in the atmosphere marked the very beginning of the ”modern Earth” as it functions today. The rocks from the birth of the ”modern Earth” have isotopic and chemical signatures that contain proof of dramatic events like the break-up of continents, volcanism and repeated global ice ages or the ”Snowball Earth”.

“Increased biological production in the oceans led to deposition of sediments rich in plant remains. The first big oil reservoirs were also formed then. The asphalt-like oil that became fossilised long ago clearly shows that oil formed early in Earth history. Knowledge of the processes that formed this ancient oil may in turn point the way towards new plays and exploration techniques,” the geologists tell me.

International cooperation

The drilling in the Fennoscandian Arctic Russia - Drilling Early Earth Project (FAR-DEEP) will take place from June to November this year. Fifteen holes from 100 to 500 metres deep will be drilled at Pechenga and Imandra on the Kola Peninsula and in Karelia, further south.

The actual research begins when Victor Melezhik and Aivo Lepland are back in Norway with 4000 metres of drill cores towards the end of the year. Scientists from as many as 15 nations will come to Trondheim then to sample the cores. Universities around the world have already promised more than 30 million NOK for this research, which will last five years.

”At the moment, only the recently started Centre for Geobiology at the University of Bergen has joined the project, but we want cooperation and contact with both the petroleum industry and other research institutions in Norway,” says Aivo Lepland.

”We’ll also be building up a good, readily available archive of the material and the results so that everyone will be able to study the core samples, which we expect will be the best rock archive from the time when our oxygen-rich Earth evolved,” Victor A. Melezhik and Aivo Lepland say.

By Gudmund Løvø

Aivo Lepland | alfa
Further information:
http://www.ngu.no

More articles from Earth Sciences:

nachricht The Wadden Sea and the Elbe Studied with Zeppelin, Drones and Research Ships
19.09.2017 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

nachricht FotoQuest GO: Citizen science campaign targets land-use change in Austria
19.09.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>