Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Colorado River Streamflow History Megadrought Before 1490

18.05.2007
An epic drought during the mid-1100s dwarfs any drought previously documented for a region that includes areas of Arizona, Colorado, New Mexico, Utah and Wyoming.

The six-decade-long drought was remarkable for the absence of very wet years. At the core of the drought was a period of 25 years in which Colorado River flow averaged 15 percent below normal.

The new tree-ring-based reconstruction documents the year-by-year natural variability of streamflows in the upper Colorado River basin back to A. D.

762, said the tree-ring scientists from The University of Arizona in Tucson who led the research team.

The work extends the continuous tree-ring record of upper Colorado streamflows back seven centuries earlier than previous reconstructions.

"The biggest drought we find in the entire record was in the mid-1100s,"
said team leader David M. Meko, an associate research professor at UA's Laboratory of Tree-Ring Research. "I was surprised that the drought was as deep and as long as it was.

Colorado River flow was below normal for 13 consecutive years in one interval of the megadrought, which spanned 1118 to 1179.

Meko contrasted that with the last 100 years, during which tree-ring reconstructed flows for the upper basin show a maximum of five consecutive years of below-normal flows.

The Colorado supplies water for cities and agriculture in seven western states in the U.S. and two states in northwestern Mexico. Los Angeles, Las Vegas, Denver, Phoenix, Tucson and Albuquerque are among the many cities dependent on Colorado River water.

The Intergovernmental Panel on Climate Change predicted in a recent report that the southwestern U.S. will become hotter and drier as the climate warms.

Co-author Connie A. Woodhouse said, "We have natural variability that includes this time in the 1100s. If we have warming it will exacerbate these kinds of droughts."

The newly documented droughts "could be an analogue for what we could expect in a warmer world," said Woodhouse, a UA associate professor of geography and regional development and dendrochronology.

Meko, who was asked by the California Department of Water Resources to pursue the research, said understanding more about natural variability in the Colorado is important to the region's water managers.

"Water managers rely on wet years to refill reservoirs," he said.

The team's research article, "Medieval drought in the upper Colorado River Basin," is scheduled to be published online in the American Geophysical Union's journal Geophysical Research Letters on May 24.

Meko and Woodhouse's co-authors are Christopher A. Baisan, a UA senior research specialist; Troy Knight, a UA graduate student; Jeffrey J. Lukas, of the University of Colorado at Boulder; Malcolm K. Hughes, a UA Regents'

Professor of dendrochronology; and Matthew W. Salzer, a UA research associate. The California Department of Water Resources, the U.S. Geological Survey and the U.S. Bureau of Reclamation funded the work.

Just about a year ago, Woodhouse and Meko and colleagues published a continuous tree-ring record for the upper Colorado River Basin that went back to 1490, the longest record for the area until now.

Other paleoclimatic research had suggested that epic droughts occurred in much of the western U.S. during the Medieval Climate Anomaly of about 900 to 1300, a time when some parts of the world were warmer than now. In addition, tree-ring data from a large network of sites showed that the areal extent of drought in western North America peaked prior to 1400.

Meko, Woodhouse and their colleagues wanted to take a closer look at what happened in the upper Colorado River basin during that time.

For the record back to 1490, the scientists took cores from old, living trees and looked at the rings' tell-tale pattern of thick and thin that indicates wet years and dry years.

Extending the record further required an underutilized technique, the analysis of logs, stumps and standing dead trees, known as remnant wood.

Baisan said, "Everyone was surprised that we could do this."

Woodhouse said, "It's so arid that wood can remain on the landscape for hundreds of years. The outside of some of our remnants date to 1200, meaning the tree died 800 years ago."

The scientists took pencil-thin cores from the living trees and cross-sections of the remnant wood from 11 different sites. The researchers then pieced together the long-term record by matching up the patterns from the cores to those from the cross-sections.

Baisan said, "This is part of ongoing work to try to understand the climate system that creates these patterns. You need the basic data about what happened before you can ask questions such as 'Why were there 60 years of low-flow on the Colorado?'"

The team's next step is collecting additional samples from the study sites and adding additional study sites in the upper Colorado River basin.

Contact information:
David Meko, 520-621-3457, dmeko@ltrr.arizona.edu Connie Woodhouse, 520-626-0235, conniew1@email.arizona.edu Christopher Baisan, 520-621-7681, cbaisan@ltrr.arizona.edu
Related Web sites:
David Meko
http://tree.ltrr.arizona.edu/~dmeko/index.html
Connie Woodhouse
http://geog.arizona.edu/people/woodhouse.php
Christopher Baisan
https://www.ltrr.arizona.edu/people/22
The University of Arizona's Laboratory of Tree-Ring Research http://www.ltrr.arizona.edu/

UA's Department of Geography and Regional Development http://geog.arizona.edu/

Colorado River Streamflow: A Paleo Perspective http://wwa.colorado.edu/resources/paleo/lees/

Mari N. Jensen | University of Arizona
Further information:
http://uanews.org/

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>