Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Short-circuit’ discovered in ocean circulation

14.05.2007
Scientists have discovered how ocean circulation is working in the current that flows around Antarctica by tracing the path of helium from underwater volcanoes. The details are published in Nature this week.

The team, led by Dr Alberto Naveira Garabato of the University of Southampton's School of Ocean and Earth Science and the National Oceanography Centre, Southampton, has found a 'short-circuit' in the circulation of the world's oceans that could aid predictions about future climate change.

This process in the Southern Ocean allows cold waters that sink to the abyss to return to the surface more rapidly than previously thought.

This affects the Southern Ocean circulation, which links all the other oceans, and is also relevant to uptake and release of carbon dioxide by the sea – transport between the deep and surface waters in the Southern Ocean is particularly important for this process.

Understanding oceanic circulation is important because it distributes heat, carbon and nutrients around the globe and therefore plays a central role in regulating Earth's climate.

The findings show that much of the overturning circulation - how water moves and mixes vertically - around Antarctica takes place just around the tip of South America and in the small region in the Atlantic south of the Falklands, called the Scotia Sea.

Co-author Prof Andrew Watson, from the University of East Anglia’s School of Environmental Sciences, said they were fundamental findings.

“The Southern Ocean is the least well understood part of the world ocean, but one of the most important parts. We are going to have to understand its circulation before we can make really confident predictions about how the climate is going to change over the next 100 years.

“This is a piece of knowledge that will help us do that. This tells us how an important part of it works”

Dr Naveira Garabato said they represented an important shift in how scientists think that the ocean circulation is driven.

"For many years, oceanographers have regarded the circulation in the upper kilometre of the ocean as being independent of that in the abyss. Our observations show that the two are very much intertwined in the Southern Ocean, and that this has substantial implications for how we represent the ocean in climate models."

The research shows that a combination of rapid mixing across and rapid movement along density surfaces creates a 'short-circuit' in the overturning circulation, meaning it is more concentrated in this part of the Southern Ocean.

The researchers made use of a unique signal - the spread of helium released naturally from the Earth’s interior at deep vents in the Pacific. The helium dissolves in the deep sea and a plume of this marked water travels down the coast of Chile. It is injected at depth into the Antarctic current on the Pacific side of Cape Horn.

It then streams through into the Atlantic with the current, but in the process is spread, shifted and diffused by the circulation. Measurements of this spreading of the helium were used to deduce the ‘short-circuit’.

Dr David Stevens, from UEA’s School of Mathematics, and Wolfgang Roether, from the University of Bremen, Germany, are also co-authors.

Press Office | alfa
Further information:
http://comm.uea.ac.uk/press/release.asp?id=752

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>