Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Short-circuit’ discovered in ocean circulation

14.05.2007
Scientists have discovered how ocean circulation is working in the current that flows around Antarctica by tracing the path of helium from underwater volcanoes. The details are published in Nature this week.

The team, led by Dr Alberto Naveira Garabato of the University of Southampton's School of Ocean and Earth Science and the National Oceanography Centre, Southampton, has found a 'short-circuit' in the circulation of the world's oceans that could aid predictions about future climate change.

This process in the Southern Ocean allows cold waters that sink to the abyss to return to the surface more rapidly than previously thought.

This affects the Southern Ocean circulation, which links all the other oceans, and is also relevant to uptake and release of carbon dioxide by the sea – transport between the deep and surface waters in the Southern Ocean is particularly important for this process.

Understanding oceanic circulation is important because it distributes heat, carbon and nutrients around the globe and therefore plays a central role in regulating Earth's climate.

The findings show that much of the overturning circulation - how water moves and mixes vertically - around Antarctica takes place just around the tip of South America and in the small region in the Atlantic south of the Falklands, called the Scotia Sea.

Co-author Prof Andrew Watson, from the University of East Anglia’s School of Environmental Sciences, said they were fundamental findings.

“The Southern Ocean is the least well understood part of the world ocean, but one of the most important parts. We are going to have to understand its circulation before we can make really confident predictions about how the climate is going to change over the next 100 years.

“This is a piece of knowledge that will help us do that. This tells us how an important part of it works”

Dr Naveira Garabato said they represented an important shift in how scientists think that the ocean circulation is driven.

"For many years, oceanographers have regarded the circulation in the upper kilometre of the ocean as being independent of that in the abyss. Our observations show that the two are very much intertwined in the Southern Ocean, and that this has substantial implications for how we represent the ocean in climate models."

The research shows that a combination of rapid mixing across and rapid movement along density surfaces creates a 'short-circuit' in the overturning circulation, meaning it is more concentrated in this part of the Southern Ocean.

The researchers made use of a unique signal - the spread of helium released naturally from the Earth’s interior at deep vents in the Pacific. The helium dissolves in the deep sea and a plume of this marked water travels down the coast of Chile. It is injected at depth into the Antarctic current on the Pacific side of Cape Horn.

It then streams through into the Atlantic with the current, but in the process is spread, shifted and diffused by the circulation. Measurements of this spreading of the helium were used to deduce the ‘short-circuit’.

Dr David Stevens, from UEA’s School of Mathematics, and Wolfgang Roether, from the University of Bremen, Germany, are also co-authors.

Press Office | alfa
Further information:
http://comm.uea.ac.uk/press/release.asp?id=752

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>