Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Melting of the Greenland ice cap may have consequences for climatic change

08.05.2007
The magnitude of possible climate change in the future will depend to a large degree on the response of ocean circulation to global warming, as the ocean currents distribute an immense quantity of heat around our planet and, besides, determine levels of humidity and energy. Any variation in ocean circulation may lead to substantial and abrupt climate changes (that is to say over less than 30 years) on a global scale.

Deep ocean sediments offer a record of ocean circulation in the past. By studying these sediments, we can see that abrupt changes in ocean circulation and the subsequent climate change are not a new phenomenon, but have happened on several occasions in the past. When the great ice sheets covering North America and Scandinavia melted at the end of the last ice age, the subsequent flow of fresh water into the North Atlantic caused the greatest natural disturbance in ocean circulation in the last 20,000 years. This episode provides an excellent model to examine the relation between ocean disturbance and climate instability.

According to a revision article published in Science, ocean circulation during the last ice age was very different to present day circulation. The formation of deep water currents in the North Atlantic was much weaker and the flow of warm water from the Gulf Stream decreased. This led to a cooling of the northern hemisphere and contributed to the formation of the great ice caps which covered North America, Scandinavia and Europe.

In a similar study, the marine sediments of the North Atlantic were observed in order to document the sequence of events that led to that disturbance. The melting caused a significant decrease in the Gulf Stream, which transports warm water from the Gulf of Mexico to the North. This submerged the region of the North Atlantic into a period of glacial cold which lasted at least 1,200 years.

Nevertheless, the slowing down of the ocean circulation in the North Atlantic began about 700 to 1,200 years before this great melting of the ice caps and the subsequent flow of fresh water into the ocean took place. The very first stage of this change coincided with brief and isolated periods of melting of the small British Ice Sheet (BIS). The authors of the study have come to this conclusion from an observation of the fine layers of sediment (formed by grains of quartz) coming from successive waves of icebergs which, when they melted dumped their load of sediments onto the sea bed. These icebergs came from the edges of the ice which surround and stabilised the BIS.

These results show that the disturbances caused by melting may in turn cause substantial changes in ocean circulation without the need for a catastrophic dumping of fresh water. This seems to indicate that an acceleration in the melting of the Greenland ice cap, could, in fact, play a key role in the future stability of ocean circulation and climate change in the whole North Atlantic region.

Octavi López Coronado | alfa
Further information:
http://www.uab.es

More articles from Earth Sciences:

nachricht New insights into the ancestors of all complex life
29.05.2017 | University of Bristol

nachricht A 3-D look at the 2015 El Niño
29.05.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>