Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Air-Sea Surface Science

First-of-its-kind observation and modeling of the air-sea interaction
before, during, and after hurricanes

Aided by new observations from the Coupled Boundary Layer Air-Sea Transfer (CBLAST) – Hurricane field program, scientists at the Rosenstiel School of Marine and Atmospheric Science have helped to develop and test a new, high-resolution computer model to better understand how air-sea interactions directly affect hurricane intensity, a factor not yet possible in the current operational forecast models.

The research, which is featured in the March 2007 issue of the Bulletin of the American Meteorological Society (BAMS), explains that current predictive models used in forecasting hurricane formation and intensity have difficulty accurately representing data such as ocean temperature, surface wind, rain and waves, and pressure and wind-speed relationships. A new fully coupled atmosphere-wave-ocean modeling system is capable of forecasting detailed hurricane inner-core structure, as well as surface temperature and wind, ocean currents, and surface waves that are crucial for improving hurricane intensity forecasts.

The CBLAST – Hurricane field program was conducted from 2002 to 2004 using NOAA's “Hurricane Hunter” aircraft, as well as drifting buoys and subsurface floats deployed ahead of Hurricanes Fabian in 2003, and Frances in 2004. Dr. William Drennan, associate professor of applied marine physics and one of the scientists who participated in the fieldwork, has helped to provide an unprecedented amount of information about how variations in ocean and sea surface conditions can accelerate or inhibit the intensification of hurricanes.

“Measuring processes near the sea-surface in hurricanes is a challenge! The CBLAST field program which brought together many new ideas and techniques has provided a wealth of new data that will help us to improve our understanding of how hurricanes gain and lose energy,” Drennan said

Rosenstiel scientist Dr. Shuyi Chen, a professor of meteorology and physical oceanography, led CBLAST's Hurricane modeling effort. She and other scientists have developed a fully coupled atmosphere-wave-ocean, high-resolution model able to predict the structure of a hurricane eye and eyewall at nearly a 1-km resolution, which is well within the recommendation for next-generation hurricane-prediction models set by the NOAA Science Advisory Board Hurricane Intensity Research Working Group.

“Extreme high winds, intense rainfall, large surface waves, strong ocean currents, and copious sea spray in hurricanes are all difficult to measure, limiting our capability in predicting their effects on hurricane intensity. The new coupled model takes into account the fully interactive nature of the atmosphere and ocean in tropical storms and represents an important first step toward developing the next-generation hurricane prediction models,” Chen said.

The effect of air-sea interactions on hurricane structure and intensity change is the main focus of the CBLAST – Hurricane program. The new, high-resolution model for hurricane research and prediction is a fully integrative modeling system, taking advantage of the new observations from the CBLAST field program to account for data from three important aspects of hurricane modeling. The overall modeling system is comprised of an atmospheric model, a surface wave model, and an ocean circulation model, all of which combine to form an innovative way of modeling storms.

CBLAST – Hurricane modeling and observation efforts were sponsored by the Office of Naval Research (ONR), and involved many scientists from numerous universities as well as from the National Oceanic and Atmospheric Administration (NOAA). “It is one of the most comprehensive studies ever of the way the ocean and atmosphere interact in hurricanes, offering the scientific community new pathways in modeling and observation that will lead to further predictive modeling progress. Improved weather forecasting will have global impacts; helping every nation affected by hurricanes and typhoons,” said Dr. Linwood Vincent, Acting Head of the Ocean, Atmosphere and Space Research Division of ONR.

The 2005 Hurricane season highlighted the urgent need for better understanding of the factors that contribute to hurricane formation and intensity change, and for developing future predictive models to improve intensity forecasts. Scientists are hoping that with improved predictive science will come better preparation and warning for areas affected by tropical storms.

Rosenstiel School is part of the University of Miami and, since its founding in the 1940s, has grown into one of the world's premier marine and atmospheric research institutions. See

Media Contacts:
Ivy Kupec, Communications Director, University of Miami
Rosenstiel School of Marine & Atmospheric Science
305/421-4704 (o) 305/984-7107 (m)

Ivy F. Kupec | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>