Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Air-Sea Surface Science

02.05.2007
First-of-its-kind observation and modeling of the air-sea interaction
before, during, and after hurricanes

Aided by new observations from the Coupled Boundary Layer Air-Sea Transfer (CBLAST) – Hurricane field program, scientists at the Rosenstiel School of Marine and Atmospheric Science have helped to develop and test a new, high-resolution computer model to better understand how air-sea interactions directly affect hurricane intensity, a factor not yet possible in the current operational forecast models.

The research, which is featured in the March 2007 issue of the Bulletin of the American Meteorological Society (BAMS), explains that current predictive models used in forecasting hurricane formation and intensity have difficulty accurately representing data such as ocean temperature, surface wind, rain and waves, and pressure and wind-speed relationships. A new fully coupled atmosphere-wave-ocean modeling system is capable of forecasting detailed hurricane inner-core structure, as well as surface temperature and wind, ocean currents, and surface waves that are crucial for improving hurricane intensity forecasts.

The CBLAST – Hurricane field program was conducted from 2002 to 2004 using NOAA's “Hurricane Hunter” aircraft, as well as drifting buoys and subsurface floats deployed ahead of Hurricanes Fabian in 2003, and Frances in 2004. Dr. William Drennan, associate professor of applied marine physics and one of the scientists who participated in the fieldwork, has helped to provide an unprecedented amount of information about how variations in ocean and sea surface conditions can accelerate or inhibit the intensification of hurricanes.

“Measuring processes near the sea-surface in hurricanes is a challenge! The CBLAST field program which brought together many new ideas and techniques has provided a wealth of new data that will help us to improve our understanding of how hurricanes gain and lose energy,” Drennan said

Rosenstiel scientist Dr. Shuyi Chen, a professor of meteorology and physical oceanography, led CBLAST's Hurricane modeling effort. She and other scientists have developed a fully coupled atmosphere-wave-ocean, high-resolution model able to predict the structure of a hurricane eye and eyewall at nearly a 1-km resolution, which is well within the recommendation for next-generation hurricane-prediction models set by the NOAA Science Advisory Board Hurricane Intensity Research Working Group.

“Extreme high winds, intense rainfall, large surface waves, strong ocean currents, and copious sea spray in hurricanes are all difficult to measure, limiting our capability in predicting their effects on hurricane intensity. The new coupled model takes into account the fully interactive nature of the atmosphere and ocean in tropical storms and represents an important first step toward developing the next-generation hurricane prediction models,” Chen said.

The effect of air-sea interactions on hurricane structure and intensity change is the main focus of the CBLAST – Hurricane program. The new, high-resolution model for hurricane research and prediction is a fully integrative modeling system, taking advantage of the new observations from the CBLAST field program to account for data from three important aspects of hurricane modeling. The overall modeling system is comprised of an atmospheric model, a surface wave model, and an ocean circulation model, all of which combine to form an innovative way of modeling storms.

CBLAST – Hurricane modeling and observation efforts were sponsored by the Office of Naval Research (ONR), and involved many scientists from numerous universities as well as from the National Oceanic and Atmospheric Administration (NOAA). “It is one of the most comprehensive studies ever of the way the ocean and atmosphere interact in hurricanes, offering the scientific community new pathways in modeling and observation that will lead to further predictive modeling progress. Improved weather forecasting will have global impacts; helping every nation affected by hurricanes and typhoons,” said Dr. Linwood Vincent, Acting Head of the Ocean, Atmosphere and Space Research Division of ONR.

The 2005 Hurricane season highlighted the urgent need for better understanding of the factors that contribute to hurricane formation and intensity change, and for developing future predictive models to improve intensity forecasts. Scientists are hoping that with improved predictive science will come better preparation and warning for areas affected by tropical storms.

Rosenstiel School is part of the University of Miami and, since its founding in the 1940s, has grown into one of the world's premier marine and atmospheric research institutions. See http://www.rsmas.miami.edu.

Media Contacts:
Ivy Kupec, Communications Director, University of Miami
Rosenstiel School of Marine & Atmospheric Science
305/421-4704 (o) 305/984-7107 (m)
E-mail: ikupec@miami.edu

Ivy F. Kupec | EurekAlert!
Further information:
http://www.miami.edu

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>