Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth could hold more water

08.03.2002


A more watery lower mantle would churn faster.
© SPL


Five times as much water as in all the world’s oceans may lurk deep below its surface.

Geologists have divined water where you might least expect it: 1,000 kilometres below the Earth’s surface. Here, rocks heated to over 1,000 oC and squeezed under high pressures may harbour around five times as much water as in all the world’s oceans. This could give clues to how the Earth formed and how it behaves today.

Between 650 and 2,900 km below the Earth’s surface hot, compressed minerals surround the planet’s iron-rich core. Called the lower mantle, this material may hold up to 0.2 per cent of its own weight in water, estimate Motohiko Murakami, of the Tokyo Institute of Technology in Japan, and colleagues1.



Theories of planetary formation take into account how much easily vaporized material, such as water and carbon dioxide, were originally present. The findings hint that Earth’s starter mix may have been sloppier than anticipated.

Water would lower the melting point of rocks in the lower mantle and increase their viscosity. Over millions of years, the mantle churns like a pan of hot soup. This moves the tectonic plates and mixes the mantle’s chemical components. A more viscous mantle would churn faster.

The take-up of water by minerals in the lower mantle might also affect the ease with which tectonic plates sink deep into the Earth. As the plates descend, heat up and become squeezed, the water that they release might soften the surrounding mantle and ease their passage.

There is already thought to be several oceans’ worth of water slightly higher in the mantle, at a depth of around 400-650 km. This region is called the transition zone, as it is between the upper and the lower mantle.

The lower mantle’s minerals can retain about a tenth as much water as the rocks above, Murakami’s team finds. But because the volume of the lower mantle is much greater than that of the transition zone, it could hold a comparable amount of water.

"The findings will boost the debate about how much water is locked away in the mantle," says geologist Bernard Wood of the University of Bristol, UK. Until now, he says, "most people would have argued that there isn’t much water in the mantle". A similar study two years ago concluded that there isn’t much water down there at all2.

Taking on the mantle

Murakami’s team mimicked the lower mantle in the laboratory. They studied the three kinds of mineral thought to make up most of the region: two perovskites, one rich in magnesium, the other in calcium, and magnesiowustite, a mixture of magnesium and iron oxides.

To recreate the its furious conditions, the researchers used a multi-anvil cell. This heats materials while squeezing them between hard teeth. Having baked the minerals at around 1,600 oC and 250,000 atmospheres, the team measured how much hydrogen the rocks contained using secondary-ion mass spectrometry. This technique blasts the material with a beam of ions and detects the ions sprayed out from the surface.

Any hydrogen in the rocks presumably comes from trapped water, an idea that other measurements support. The researchers found more hydrogen than previous experiments had led them to expect.

References

  1. Murakami, M., Hirose, K., Yurimoto, H., Nakashima, S. & Takafuji, N. Water in Earth’s lower mantle. Science, 295, 1885 - 1887, (2002).
  2. Bolfan-Casanova, N., Kepler, H. & Rubie, D.C. Water partitioning between nominally anhydrous minerals in the MgO-SiO2-H2O system up to 24 GPa: implications for the distribution of water in the Earth’s mantle. Earth and Planetary Science Letters, 182, 209, (2000).


PHILIP BALL | © Nature News Service

More articles from Earth Sciences:

nachricht A promising target in the quest for a 1-million-year-old Antarctic ice core
24.05.2018 | University of Washington

nachricht Tropical Peat Swamps: Restoration of Endangered Carbon Reservoirs
24.05.2018 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>