Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth could hold more water

08.03.2002


A more watery lower mantle would churn faster.
© SPL


Five times as much water as in all the world’s oceans may lurk deep below its surface.

Geologists have divined water where you might least expect it: 1,000 kilometres below the Earth’s surface. Here, rocks heated to over 1,000 oC and squeezed under high pressures may harbour around five times as much water as in all the world’s oceans. This could give clues to how the Earth formed and how it behaves today.

Between 650 and 2,900 km below the Earth’s surface hot, compressed minerals surround the planet’s iron-rich core. Called the lower mantle, this material may hold up to 0.2 per cent of its own weight in water, estimate Motohiko Murakami, of the Tokyo Institute of Technology in Japan, and colleagues1.



Theories of planetary formation take into account how much easily vaporized material, such as water and carbon dioxide, were originally present. The findings hint that Earth’s starter mix may have been sloppier than anticipated.

Water would lower the melting point of rocks in the lower mantle and increase their viscosity. Over millions of years, the mantle churns like a pan of hot soup. This moves the tectonic plates and mixes the mantle’s chemical components. A more viscous mantle would churn faster.

The take-up of water by minerals in the lower mantle might also affect the ease with which tectonic plates sink deep into the Earth. As the plates descend, heat up and become squeezed, the water that they release might soften the surrounding mantle and ease their passage.

There is already thought to be several oceans’ worth of water slightly higher in the mantle, at a depth of around 400-650 km. This region is called the transition zone, as it is between the upper and the lower mantle.

The lower mantle’s minerals can retain about a tenth as much water as the rocks above, Murakami’s team finds. But because the volume of the lower mantle is much greater than that of the transition zone, it could hold a comparable amount of water.

"The findings will boost the debate about how much water is locked away in the mantle," says geologist Bernard Wood of the University of Bristol, UK. Until now, he says, "most people would have argued that there isn’t much water in the mantle". A similar study two years ago concluded that there isn’t much water down there at all2.

Taking on the mantle

Murakami’s team mimicked the lower mantle in the laboratory. They studied the three kinds of mineral thought to make up most of the region: two perovskites, one rich in magnesium, the other in calcium, and magnesiowustite, a mixture of magnesium and iron oxides.

To recreate the its furious conditions, the researchers used a multi-anvil cell. This heats materials while squeezing them between hard teeth. Having baked the minerals at around 1,600 oC and 250,000 atmospheres, the team measured how much hydrogen the rocks contained using secondary-ion mass spectrometry. This technique blasts the material with a beam of ions and detects the ions sprayed out from the surface.

Any hydrogen in the rocks presumably comes from trapped water, an idea that other measurements support. The researchers found more hydrogen than previous experiments had led them to expect.

References

  1. Murakami, M., Hirose, K., Yurimoto, H., Nakashima, S. & Takafuji, N. Water in Earth’s lower mantle. Science, 295, 1885 - 1887, (2002).
  2. Bolfan-Casanova, N., Kepler, H. & Rubie, D.C. Water partitioning between nominally anhydrous minerals in the MgO-SiO2-H2O system up to 24 GPa: implications for the distribution of water in the Earth’s mantle. Earth and Planetary Science Letters, 182, 209, (2000).


PHILIP BALL | © Nature News Service

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>