Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth could hold more water

08.03.2002


A more watery lower mantle would churn faster.
© SPL


Five times as much water as in all the world’s oceans may lurk deep below its surface.

Geologists have divined water where you might least expect it: 1,000 kilometres below the Earth’s surface. Here, rocks heated to over 1,000 oC and squeezed under high pressures may harbour around five times as much water as in all the world’s oceans. This could give clues to how the Earth formed and how it behaves today.

Between 650 and 2,900 km below the Earth’s surface hot, compressed minerals surround the planet’s iron-rich core. Called the lower mantle, this material may hold up to 0.2 per cent of its own weight in water, estimate Motohiko Murakami, of the Tokyo Institute of Technology in Japan, and colleagues1.



Theories of planetary formation take into account how much easily vaporized material, such as water and carbon dioxide, were originally present. The findings hint that Earth’s starter mix may have been sloppier than anticipated.

Water would lower the melting point of rocks in the lower mantle and increase their viscosity. Over millions of years, the mantle churns like a pan of hot soup. This moves the tectonic plates and mixes the mantle’s chemical components. A more viscous mantle would churn faster.

The take-up of water by minerals in the lower mantle might also affect the ease with which tectonic plates sink deep into the Earth. As the plates descend, heat up and become squeezed, the water that they release might soften the surrounding mantle and ease their passage.

There is already thought to be several oceans’ worth of water slightly higher in the mantle, at a depth of around 400-650 km. This region is called the transition zone, as it is between the upper and the lower mantle.

The lower mantle’s minerals can retain about a tenth as much water as the rocks above, Murakami’s team finds. But because the volume of the lower mantle is much greater than that of the transition zone, it could hold a comparable amount of water.

"The findings will boost the debate about how much water is locked away in the mantle," says geologist Bernard Wood of the University of Bristol, UK. Until now, he says, "most people would have argued that there isn’t much water in the mantle". A similar study two years ago concluded that there isn’t much water down there at all2.

Taking on the mantle

Murakami’s team mimicked the lower mantle in the laboratory. They studied the three kinds of mineral thought to make up most of the region: two perovskites, one rich in magnesium, the other in calcium, and magnesiowustite, a mixture of magnesium and iron oxides.

To recreate the its furious conditions, the researchers used a multi-anvil cell. This heats materials while squeezing them between hard teeth. Having baked the minerals at around 1,600 oC and 250,000 atmospheres, the team measured how much hydrogen the rocks contained using secondary-ion mass spectrometry. This technique blasts the material with a beam of ions and detects the ions sprayed out from the surface.

Any hydrogen in the rocks presumably comes from trapped water, an idea that other measurements support. The researchers found more hydrogen than previous experiments had led them to expect.

References

  1. Murakami, M., Hirose, K., Yurimoto, H., Nakashima, S. & Takafuji, N. Water in Earth’s lower mantle. Science, 295, 1885 - 1887, (2002).
  2. Bolfan-Casanova, N., Kepler, H. & Rubie, D.C. Water partitioning between nominally anhydrous minerals in the MgO-SiO2-H2O system up to 24 GPa: implications for the distribution of water in the Earth’s mantle. Earth and Planetary Science Letters, 182, 209, (2000).


PHILIP BALL | © Nature News Service

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>