Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global warming, Antarctic ice is focus of multinational workshop

27.04.2007
As the national repository for geological material from the Southern Ocean, the Antarctic Marine Geology Research Facility at Florida State University houses the premier collection of Antarctic sediment cores -- and a hot new acquisition will offer an international team of scientists meeting there May 1-4 its best look yet at the impact of global warming on oceans worldwide.

The remarkable new core was extracted during the recent Antarctic summer from record-setting drilling depths 4,214 feet below the sea floor beneath Antarctica's Ross Ice Shelf, the Earth's largest floating ice body. Laced with sediment dating from the present day to about 10 million years ago, the core provides a geologic record of the ice shelf's history in unprecedented detail.

In fact, a polar research news feature in the March 2007 edition of the journal Nature called the sediment core "a frozen time capsule from Earth's icy past."

Greenish rock layered throughout the "time capsule" indicates periods of open-water conditions, suggesting that the Ross ice shelf retreated and advanced perhaps as many as 50 times over the last 5 million years in response to climate changes, says FSU AMGRF Head Curator Matthew Olney. He notes that signs of fluctuations such as these are critical because the Ross Sea ice is a floating extension of the even bigger West Antarctic Ice Sheet -- an area of the southernmost continent so unstable that scientists foresee its collapse in a world overheated by global warming.

A collapse there could raise sea levels worldwide by a catastrophic 20 feet.

Credit for the core's record-setting extraction goes to the inaugural expedition of ANDRILL (ANtarctic geological DRILLing) -- a $30 million multinational project for which FSU is playing the key curatorial role. The collaborative research initiative is the most ambitious seafloor drilling effort ever undertaken at the Antarctic margins. The National Science Foundation's Office of Polar Programs largely funds both ANDRILL and the AMGRF at FSU.

May 1-4, members of FSU's geology faculty and AMGRF staff will welcome to campus more than 100 ANDRILL researchers -- scientists, drillers, students and educators from Germany, Italy, New Zealand and the United States -- for the first post-drilling meeting.

"The upcoming ANDRILL workshop at FSU will focus on the review and completion of an initial report on the first ANDRILL expedition as well as giving the scientists an opportunity to re-examine the cores now safely stored at the AMGRF," Olney said.

The workshop also will feature a special recognition. At a reception May 1, FSU Vice President for Research Kirby Kemper will present a certificate from NSF and the international "Committee on Antarctic Geographic Names" to Dennis Cassidy, who served as AMGRF's head curator from 1962 to 1992, and for whom a mountain in Antarctica has been named in his honor.

"Needless to say, this is a high honor for Dennis, and one that exemplifies the level of service our Antarctic Marine Geology Research Facility has provided the global community over the years," said FSU geology Professor Sherwood W. Wise, Jr., a co-principal investigator at AMGRF, a participating (off-ice) scientist for ANDRILL and a member of the ANDRILL U.S. advisory committee.

FSU's ANDRILL role kicked off in December when university staff, undergraduates Charlie King and Kelly Jemison, graduate student Steve Petrushack, visiting research associate Davide Persico, AMGRF Head Curator Matthew Olney and Assistant Curator Matthew Curren began a three-month stint on the curatorial team. Only one member of the team had previously been to Antarctica.

Their curatorial duties included transporting sediment core sections seven miles from the drill site to the McMurdo Station laboratory; splitting them longitudinally into working and archive halves, then imaging each split face; taking samples from the working half for on-ice scientific description; and safely packing, logging and transporting them back to the FSU research facility.

Wise pointed out that the recent ANDRILL expedition to Antarctica was the second such project involving AMGRF scientists, curators, and students within a six-month period -- the first being the SHALDRIL ("Shallow Drilling") cruise in which FSU took a leadership role. "It's been a very busy year at our facility, with six FSU participants on both projects involved in the science to various degrees while providing curatorial support to both," he added.

FSU and its ANDRILL partners already are gearing up for the next excursion, scheduled for October 2007 during the Antarctic spring. Still, the inaugural trip was especially memorable.

"So many scientists and technicians brought together from around the world for the first time and under taxing conditions made for a challenging work environment," Olney said. "Yet, the entire ANDRILL team did a superb job with one aim in mind: recovering a record-breaking geological record that will remain a legacy to the scientific community for decades to come."

Matthew Olney | EurekAlert!
Further information:
http://www.arf.fsu.edu/index.cfm

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>