Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revolutionary new findings about the history of trees and climate in Scandinavia

07.03.2002


Scientists at Umeå University in Sweden are putting forward an entirely new picture of climate change and the first immigration of trees following the last Ice Age. Research shows that 8,000-14,000 years ago the climate was considerably warmer than was previously thought. When it was at its warmest 9,000-10,000 years ago, the timberline was 500 m higher than today, and leafy trees grew in the mountains. The spruce immigrated considerably earlier that was assumed until now, and it probably came from the west, not the east. What’s more, research provides some support for the hypothesis that humankind has affected the climate in more recent times. Deciduous trees are again being spotted in mountain terrain!



The project combines in a unique way a long-term historical perspective with more contemporary events. For example, the reasons for the ever warmer climate of the last hundred years are being analyzed. “This research adds strength to the suspicion that the warmer climate may be related to the influence of human activity on the environment,” says Professor Leif Kullman, who heads this comprehensive physical geographical research project at the Department of Ecology and Environmental Science at Umeå University.

The spruce came from the west


High mountain peaks, like Åreskutan, thawed free as early as 14,000 years ago, which is 4,000-5,000 years earlier than earlier studies have indicated. After that, tree species like the mountain birch, pine, and spruce rapidly immigrated to these extremely high levels. Everything indicates that the climate was substantially warmer than today. One especially sensational finding is that the spruce appeared in the mountain chain more than 11,000 years ago. It has previously been taken for granted that the spruce came in from the east (from Russia) 3,000-4,000 years ago. The new discoveries show that the spruce was not only established earlier but also that it came from the west. Perhaps the trees ‘hibernated’ through the Ice Age on the emerged sea floor southwest of Norway.

Some 8,000-9,000 years ago, the tree flora of the mountains comprised previously unknown species for these regions, such as the Siberian larch, oak, lime, elm, hazel, and alder. The latter five are leafy trees that prefer an entirely different and warmer climate than that of today.

Changes in the timberline indicate climatic changes

The long-term trends of the climate have been reconstructed by analyzing changes in the timberline. The highest timberline and the warmest summers occurred about 9,500 years ago. At that time trees grew more than 500 m higher up the mountain slopes compared with today’s conditions. Subsequently there was incremental cooling up to the end of the 19th century. The timberline was then lower and the bare slopes greater than ever before.

Support for the greenhouse effect?
About 100 years ago there was a unique reversal of the trend. The climate suddenly became considerably warmer, and the timberline climbs 100-150 m during the following 100 years. The mountain forests were revitalized, and deciduous trees even started to appear on the mountain fringe. The project has managed to evaluate the ever warmer climate of the 20th century and the higher and higher elevation of the timberline. “Our present warm climate stands out as unique, at least in regard to the last 3,500 years, exceeding the natural variations that might be expected in the climate. We may be looking at one of the most concrete proofs that humans have started to affect the earth’s climate and ecosystem,” says Leif Kullman.

New methods yield more reliable results

The success of the project is based, apart from hard and patient field work, on the consistent application of a new methodology. The history of trees, forests, and the climate has been recreated by so-called megafossil-analysis. This means that large plant remains, like trunks, roots, and cones that have been preserved in peat and sea sediment, are sought out and dated using the C14 method. This yields a decidedly more reliable picture than previous research did, being based almost exclusively on pollen analysis. A more general aspect of the findings of the project is that earlier research into the history of vegetation based on pollen analysis can and should be reinterpreted.

Ulrika Bergfors Kriström | alphagalileo
Further information:
http://www.umu.se

More articles from Earth Sciences:

nachricht NASA examines Peru's deadly rainfall
24.03.2017 | NASA/Goddard Space Flight Center

nachricht Steep rise of the Bernese Alps
24.03.2017 | Universität Bern

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>