Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Revolutionary new findings about the history of trees and climate in Scandinavia


Scientists at Umeå University in Sweden are putting forward an entirely new picture of climate change and the first immigration of trees following the last Ice Age. Research shows that 8,000-14,000 years ago the climate was considerably warmer than was previously thought. When it was at its warmest 9,000-10,000 years ago, the timberline was 500 m higher than today, and leafy trees grew in the mountains. The spruce immigrated considerably earlier that was assumed until now, and it probably came from the west, not the east. What’s more, research provides some support for the hypothesis that humankind has affected the climate in more recent times. Deciduous trees are again being spotted in mountain terrain!

The project combines in a unique way a long-term historical perspective with more contemporary events. For example, the reasons for the ever warmer climate of the last hundred years are being analyzed. “This research adds strength to the suspicion that the warmer climate may be related to the influence of human activity on the environment,” says Professor Leif Kullman, who heads this comprehensive physical geographical research project at the Department of Ecology and Environmental Science at Umeå University.

The spruce came from the west

High mountain peaks, like Åreskutan, thawed free as early as 14,000 years ago, which is 4,000-5,000 years earlier than earlier studies have indicated. After that, tree species like the mountain birch, pine, and spruce rapidly immigrated to these extremely high levels. Everything indicates that the climate was substantially warmer than today. One especially sensational finding is that the spruce appeared in the mountain chain more than 11,000 years ago. It has previously been taken for granted that the spruce came in from the east (from Russia) 3,000-4,000 years ago. The new discoveries show that the spruce was not only established earlier but also that it came from the west. Perhaps the trees ‘hibernated’ through the Ice Age on the emerged sea floor southwest of Norway.

Some 8,000-9,000 years ago, the tree flora of the mountains comprised previously unknown species for these regions, such as the Siberian larch, oak, lime, elm, hazel, and alder. The latter five are leafy trees that prefer an entirely different and warmer climate than that of today.

Changes in the timberline indicate climatic changes

The long-term trends of the climate have been reconstructed by analyzing changes in the timberline. The highest timberline and the warmest summers occurred about 9,500 years ago. At that time trees grew more than 500 m higher up the mountain slopes compared with today’s conditions. Subsequently there was incremental cooling up to the end of the 19th century. The timberline was then lower and the bare slopes greater than ever before.

Support for the greenhouse effect?
About 100 years ago there was a unique reversal of the trend. The climate suddenly became considerably warmer, and the timberline climbs 100-150 m during the following 100 years. The mountain forests were revitalized, and deciduous trees even started to appear on the mountain fringe. The project has managed to evaluate the ever warmer climate of the 20th century and the higher and higher elevation of the timberline. “Our present warm climate stands out as unique, at least in regard to the last 3,500 years, exceeding the natural variations that might be expected in the climate. We may be looking at one of the most concrete proofs that humans have started to affect the earth’s climate and ecosystem,” says Leif Kullman.

New methods yield more reliable results

The success of the project is based, apart from hard and patient field work, on the consistent application of a new methodology. The history of trees, forests, and the climate has been recreated by so-called megafossil-analysis. This means that large plant remains, like trunks, roots, and cones that have been preserved in peat and sea sediment, are sought out and dated using the C14 method. This yields a decidedly more reliable picture than previous research did, being based almost exclusively on pollen analysis. A more general aspect of the findings of the project is that earlier research into the history of vegetation based on pollen analysis can and should be reinterpreted.

Ulrika Bergfors Kriström | alphagalileo
Further information:

More articles from Earth Sciences:

nachricht Wandering greenhouse gas
16.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Unique Insights into the Antarctic Ice Shelf System
14.03.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>