Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Altered Atlantic winds may hamper hurricanes

19.04.2007
In response to global warming, an atmospheric effect called wind shear may strengthen in the tropical Atlantic during this century and inhibit hurricane development and intensification there. So say researchers who have recently peered into the region's potential climate future using a large set of state- of-the-art global climate models.

Increased vertical wind shear--a tearing action which can pull a storm apart and is caused by differences in wind speed or direction with altitude--historically has been associated with reduced hurricane activity and intensity. While other studies have linked global warming to greater hurricane intensity, this study is the first to identify changes in wind shear that could counteract that effect, the scientists say.

"Wind shear is one of the dominant controls to hurricane activity, and the models project substantial increases in the Atlantic," says oceanographer Gabriel A. Vecchi of the National Oceanic and Atmospheric Administration (NOAA) in Princeton, New Jersey.

Using 18 different models, he and Brian J. Soden of the University of Miami, Florida, assessed changes in environmental factors linked to hurricane formation and intensity. In particular, they investigated potential variation in vertical wind shear over the tropical Atlantic and its ties to the Pacific Walker circulation. That vast loop of winds influences climate across much of the globe and varies in concert with El Nino and La Nina oscillations. In the new work, the models mostly predict a slowing of the Pacific Walker circulation, leading to greater wind shear throughout much of the tropical Atlantic.

"The impact on hurricane activity of the projected shear change could be as large -- and in the opposite sense -- as that of the warming oceans," Vecchi says. In other regions, such as the western tropical Pacific, the study finds that global warming renders the environment more favorable for hurricanes.

Vecchi and Soden report their findings today in Geophysical Research Letters, a journal of the American Geophysical Union.

The simulations incorporated a mid-range emissions scenario from the Intergovernmental Panel on Climate Change Fourth Assessment -- the latest of those assessments. According to the emissions scenario, the concentration of atmospheric carbon dioxide stabilizes at 720 parts per million by the year 2100. The wind-shear study examines two 20-year periods during this century: 2001-2020 and 2081-2100.

Vecchi notes that projections of increased wind shear found in the study are confined to the tropical Atlantic and East Pacific.

Moreover, factors besides global warming also contribute to change in Atlantic wind shear. The new simulations, Vecchi adds, provide "one piece of the puzzle" of how increased wind shear may affect hurricane activity.

For animations and still images depicting wind shear's impact on a hurricane, please visit the NOAA web site at: http://gfdl.noaa.gov/~gav/ipcc_viz.html

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org
http://gfdl.noaa.gov/~gav/ipcc_viz.html

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>