Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Discover First Seafloor Vents on Ultraslow-Spreading Ridge

17.04.2007
Scientists have found one of the largest fields of seafloor vents gushing super-hot, mineral-rich fluids on a mid-ocean ridge that, until now, remained elusive to the ten-year hunt to find them.

“The discovery of the first active vents ever found on an ultraslow-spreading ridge is a significant milestone event,” said Jian Lin, leader of a team of Woods Hole Oceanographic Institution (WHOI) scientists who participated in a Chinese expedition to the remote Southwest Indian Ridge in the Indian Ocean in February and March.

Since deep-sea hydrothermal vents were first discovered 30 years ago in the Pacific Ocean, scientists have studied them all along the Mid-Ocean Ridge, a 40,000-mile-long mountain range that zigzags through the middle of the world’s ocean basins like a giant zipper. The ridge marks the area where the Earth’s giant tectonic plates spreads apart and new ocean crust forms from hot lava rising from deep within Earth’s mantle.

Most studies of the chimney-like vent structures have taken place along ridges in the “fast-spreading” East Pacific Rise (100 to 200 millimeters per year) and the “slow-spreading” Mid-Atlantic Ridge (20 to 40 millimeters per year). Only in recent years have scientists explored “ultraslow-spreading ridges” (less than 20 millimeters per year) in the Arctic and Indian Oceans—remote areas tough to get to, and therefore the least studied.

Scientists initially thought ultraslow-spreading ridges would be too cold to host large hot vents. But in the past decade, some scientists began to hypothesize that the slower a ridge spreads, the fewer vents it would have—but the bigger the vent fields would be.

“This cruise confirmed that hypothesis,” said Lin, a marine geophysicist and U.S. Coordinator of the 20-day expedition aboard the Chinese research vessel Dayang 1. “People have been looking for active hot vents on ultraslow ridges for more than 10 years,” Lin said.

In 2005-06, as part of China’s first around-the-world oceanographic expedition, Lin had sailed as a US chief scientist on Dayang 1 to the Southwest Indian Ridge, where scientists found tantalizing evidence of active hydrothermal venting. They gathered critical data that led them back to the site this year.

During the February-March expedition, the team nailed the discovery with the aid of ABE, WHOI’s Autonomous Benthic Explorer, which has been instrumental in recent years in helping scientists find vents on the bottom of the ocean much quicker than ever before. ABE acts like a robotic deep-sea bloodhound: In a sequence of dives, its sensors “sniff out” clues indicating a plume of fluids emanating from a vent and collect data scientists use to home in on the vent.

ABE also uses sonar to create maps of vent fields and takes photographs about 5 meters above them. ABE snapped 5,000 images of the robust Southwest Indian Ridge vent site, which is among the largest known to date. It is larger than a football field (120 meters by 100 meters).

The discovery was a first for China. “This discovery reflects China’s increasing contribution to ocean science in general, and ridge science in particular,” Lin said.

The China Ocean Mineral Resources R&D Association (COMRA) in Beijing, China, funded the 2005-06 expedition and ABE’s participation in the current one. COMRA, which represents China in the International Seabed Authority, has been exploring the deep sea for mineral resources since the early 1990s.

China is increasing investments in ocean science, Lin said. COMRA’s primary interests lay in the large sulfide deposits created by hydrothermal vents, which are rich in copper, zinc, gold, and other minerals, he said.

“Our Chinese colleagues were the happiest people I’ve ever seen at sea when they brought the first samples aboard,” said Dana Yoerger, scientist in the WHOI Deep Submergence Laboratory and co-designer of ABE, who participated in the expedition. Once ABE pinpointed the site’s exact location, the Chinese team sent down its “TV grab”— a grappling device guided by a television camera—and retrieved a reddish chunk of a vent chimney, Yoerger said.

The researchers outran a tropical cyclone and collected the data they needed in just six days and three ABE dives. “It was the most ruthlessly efficient science we’ve ever done,” said Christopher German, chief scientist of the WHOI-operated National Deep Submergence Facility, who also participated in the expedition. “We had no margin for error.”

The Chinese science party was led by chief scientist Chunhui Tao, a geophysicist at the Second Institute of Oceanography in Hanzhou, China.

“The two international teams worked exceedingly well for this kind of complex operation,” Lin said

Joanne Tromp | EurekAlert!
Further information:
http://www.whoi.edu

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Single-photon detector can count to 4

18.12.2017 | Information Technology

Quantum memory with record-breaking capacity based on laser-cooled atoms

18.12.2017 | Physics and Astronomy

How much soil goes down the drain -- New data on soil lost due to water

18.12.2017 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>