Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cluster sees tsunamis in space

13.04.2007
Cluster is providing new insights into the working of a ‘space tsunami’ that plays a role in disrupting the calm and beautiful aurora, or northern lights, creating patterns of auroral dances in the sky.

Generally seen in high-latitude regions such as Scandinavia or Canada, aurorae are colourful curtains of light that appear in the sky. Caused by the interaction of high-energy particles brought by the solar wind, with Earth’s magnetic field, they appear in many different shapes.

Early in the evening, the aurora often forms a motionless green arc that stretches across the sky in the east-west direction. Colourful dancing auroral forms are the results of disturbances known as ‘substorms’ taking place in Earth’s magnetosphere. These perturbations can affect our daily lives, in particular by affecting the reception of GPS signals. Thus, understanding the physical processes involved is important to our routine life and security.

These substorms typically last one to two hours and are three-dimensional physical phenomena spread over altitudes from 100 to 150 000 kilometres. Trying to understand such complex physical processes with a single scientific spacecraft is like trying to predict the behaviour of a tsunami with a single buoy in an ocean. That is why, the simultaneous use of several satellites like the Cluster constellation is necessary to understand these events.

Currently, there are two competing theoretical models to describe these substorms or space tsunamis. The first one is called the ‘Current-Disruption’ model, while the second one is the ‘Near Earth Neutral Line Model’. Using data from the four Cluster spacecraft, a group of scientists from both sides of the Atlantic were able to confirm that the behaviour of some substorms is consistent with the Current Disruption model.

A substorm develops and builds up in different stages, and it is the detailed study of one of these stages that helps us to understand which of the two models apply. For example, in the late stage of substorm development, auroral disturbances move towards the poles, suggesting that the energy source for auroras and substorms moves away from Earth.

Previous satellite observations have found that, during this late stage, the flows of plasma (a gas of charged particles populating Earth’s magnetosphere) in the magnetotail exhibit a reversal in direction. In recent years it was generally thought that a flow reversal region is where magnetic reconnection takes place, that is where the energy of the magnetic field is converted into particle energy (dissipation effect), resulting in high-speed plasma flows that hurl towards Earth, like space tsunamis.

Detailed analysis of data obtained by the Cluster satellites while crossing such a region in the magnetotail, where flows of plasma exhibit a reversal in direction, has been reported by the team of Dr Tony Lui, a scientist of the Applied Physics Laboratory at the John Hopkins University, Maryland, USA, Co-Investigator of the Research with Adaptive Particle Imaging Detectors (RAPID) high-energy particles experiment on Cluster, and lead author of the study. Thanks to the unique capability of Cluster to perform simultaneous multipoint measurements, the scientists were able to derive several physical parameters never before estimated for such a flow reversal region.

By comparing the directions of the electric current and the electric field in the magnetosphere it is possible to understand whether the cause of the flow reversal is a dissipation effect (where magnetic field energy converted to particle energy) or a dynamo effect (where particle energy is converted to magnetic field energy). For this case study, the Cluster scientists observed that features associated with flow reversal are actually very complex, consisting of both dissipation and dynamo effects in localised sites.

This result shows that the plasma turbulence disrupts the local electric current. “The features we observed are consistent with the current disruption model. However, it is unclear how general these findings are. More events will be examined in the future," said Dr Lui.

"The magnetic substorm phenomenon is a hot topic of research,” added Philippe Escoubet, Cluster and Double Star project scientist for ESA. “This new Cluster result will certainly contribute to the on-going scientific debate and foster research cooperation with scientists involved in the newly launched NASA Time History of Events and Macroscale Interactions during Substorms (THEMIS), a mission specifically dedicated to studying substorms.”

Philippe Escoubet | alfa
Further information:
http://www.esa.int/esaSC/SEMZMD7DWZE_index_0.html

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>