Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ancient coral reef tells the history of Kenya's soil erosion

12.04.2007
Coral reefs, like tree rings, are natural archives of climate change. But oceanic corals also provide a faithful account of how people make use of land through history, says Robert B. Dunbar of Stanford University.

In a study published in the Feb. 22 issue of Geophysical Research Letters, Dunbar and his colleagues used coral samples from the Indian Ocean to create a 300-year record of soil erosion in Kenya, the longest land-use archive ever obtained in corals. A chemical analysis of the corals revealed that Kenya has been losing valuable topsoil since the early 1900s, when British settlers began farming the region.

"We found that soil erosion in Kenya increased dramatically after World War I, coinciding with British colonialism and a series of large-scale agricultural experiments that provoked a dramatic change in human use of the landscape," said Dunbar, a professor of geological and environmental sciences. "Today, the Kenyan landscape continues to lose topsoil to the Indian Ocean, primarily because of human pressure."

Erosion is a serious threat, he noted, because the loss of fertile soil often is accompanied by a decrease in food production. According to one recent study, soil erosion is a global problem that has caused widespread damage to agriculture and animal husbandry, placing about 2.6 billion people at risk of famine. "This is particularly worrisome in East and sub-Saharan Africa, where per capita food production has declined for the last half-century," Dunbar said.

Coral bands

For the study, Dunbar and his colleagues donned scuba gear and dove to the Malindi coral reef near the mouth of the Sabaki River, the second longest river in Kenya. Draining about 11 percent of Kenya's landmass, the Sabaki transports sediments to the sea.

The researchers took core samples from two large coral colonies, each more than 12 feet tall and about 15 feet wide. To find out how sediment flux has varied over the years, Dunbar's team measured the ratio of two elements—barium and calcium—in the coral skeleton, which is composed of calcium carbonate. "It turns out that there is a lot of barium in soils," Dunbar said. "So whenever something changes the landscape and causes the soil to erode and wash into the rivers, the soil is delivered to the sea. And with that soil comes the barium."

The corals then incorporate the barium in well-developed bands that provide a record of annual growth, similar to tree rings, he added. To measure barium levels in the corals, Dunbar's team applied an innovative technique that quickly vaporizes the carbonate, then analyzes its chemical composition with a mass spectrometer.

"In the past we used a dentist drill," Dunbar said. "We drilled out a little bit of powder, and then we dissolved the powder and took it to the lab, where we measured the barium with a wet chemical technique. It was a very slow process, very painful. It took forever to get data." The new method, developed by researchers at the Australian National University, "increased the speed at which we could collect data by a factor of 50," he noted.

Equilibrium loss

An analysis of barium levels revealed that prior to about 1915, the Kenyan landscape was in equilibrium—rain washed out some soils moderately from decade to decade in a regular cycle that was only altered by periods of drought. "But in the late 1910s, the amount of barium coming down to the coast suddenly shoots up, and it keeps rising and rising," Dunbar said. "This represents colonial land change, when the British came in and tried some grand-scale experiments, like the clearing of bush to create coffee plantations."

Before the plantations were developed, the primary long-term land uses in the region were nomadic animal husbandry and small-scale agriculture—sustainable practices that were compatible with the natural vegetation, Dunbar said. But then the colonialists began clear-cutting some of the coastal forests and burning vegetation to make room for the plantation experiments. What followed was a drastic increase in soil erosion that turned the rivers muddy and brown. "It's a natural thing," Dunbar explained. "When you perturb a landscape and you cut down trees and bushes—the plants that normally help hold the soils together—the next time you have a big rain or a flood, the soils go to the rivers."

Although colonialism ended decades ago and plantations along the coast were abandoned, the landscape remains out of equilibrium, he said: "This would be a lesson for other parts of the planet: When you perturb a system by clear-cutting the natural vegetation and it responds in a negative way, it loses its essence, and it responds not just for a few years or a few decades but maybe a century or even more."

Population pressure

Another factor driving soil erosion in Kenya is human pressure. As the population grows, more trees are harvested for fuel, which contributes to erosion, Dunbar said.

"Furthermore, a dramatic increase in population following independence [in 1963] together with unregulated land use, deforestation and severe droughts in the early 1970s all contributed to an unprecedented rate of soil erosion and flux of suspended sediment [and barium] to Malindi reef between 1974 and 1980," the authors wrote. Erosion remains a serious problem today, they added, thanks in part to continued urban sprawl, deforestation, poor farming practices and other human activities.

The authors called for stronger soil conservation efforts—a goal that Kenya is unlikely to achieve on its own because of a lack of economic resources, they noted. However, if soil devastation continues, the socioeconomic consequences could be dire, Dunbar said. "Loss of soils constitutes loss of valuable natural capital for the people of East Africa," he noted. "A follow-on effect is that loss of the soils down the rivers can also have a damaging effect of the coastal zone, particularly the health of local fisheries and the corals reefs that drive a local tourist economy."

The Dunbar lab's next research effort will focus on mega-droughts—periods of severely reduced rainfall that lasted for decades in East Africa. The most recent mega-drought occurred between 1750 and 1820. "If you think how many people live in East Africa now, if a mega-drought happened today, it would be devastating," Dunbar said.

Mark Shwartz | EurekAlert!
Further information:
http://www.stanford.edu/news/
http://www.stanford.edu/dept/news/html/releases.html

More articles from Earth Sciences:

nachricht Research sheds new light on forces that threaten sensitive coastlines
24.04.2017 | Indiana University

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>